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Kalman Filter

● Kalman Filter is an algorithm which produces estimates of 

unknown variables given a series of measurements (w/ noise) 

over time.

● Numerous applications in

● Robot localization

● Econometrics (time series)

● Military: rocket and missile guidance 

● Autopilot

● Weather forecasting

● Speech enhancement

● …
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Kalman Filtering: an example

● Input statements

● John’s house price was $0.39M at 2014.

● Each year, John’s house price increases 5%.

● John’s house price is around the sold price.

● John’s house is sold sporadically.

● Question: what is the price of John’s house each year?
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Relational Kalman Filtering (RFK):
[Choi Guzman, Amir, IJCAI-11] & [Ahmadi, Kersting, Sanner, IJCAI-11]

● Input statements

● Town is a set of houses.

● Town’s houses have initial prices at 2014.

● Each year, Town’s house prices increase 5%.

● Town’s house prices are around sold prices.

● Town’s houses are sold sporadically.

● Question: what is the prices of Town’s houses each year?
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● Input statements
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Current Issue:
Sparse Observations  Model Degenerations
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Main Finding: 
Relational Obs Prevent RFK from Degenerating!
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Main Theoretical Result

Theorem: For two rvs (X and X’) in a set (atom) A of RKF

(1) X and X’ have no obs for the previous k steps, 

(2) At least one obs is made to the other rvs in A each time step

Then, for c>1, the following holds,

|𝑽𝒂𝒓 𝑿 − 𝑽𝒂𝒓 𝑿′ | ≤ 𝑶 𝒄−𝒌 .
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𝟐𝟎 − 𝑽𝒂𝒓 𝑿𝑨𝒏𝒏

𝟐𝟎 ≤ 𝑶 𝒄−𝟓 .

=2020-2015

When conditions (1) and (2) are satisfied, 

We can recover a relational model out of a degenerated model!



GT, GO: Gaussian Noise

Ut(x): user input for x at time t BT, HO : coefficients
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Parameter Learning for RKF Models

Input:

o Relational Parameters for RKFs (BT, GT, HO, GO)

o (Relational) Sets of random variables

o A sequence of observations

Output:

Parameter Learning Problem:



Parameter Learning for RKF Models 
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In case of, the covariance matrix (e.g., GT, and GO)

 𝑖 𝑏𝑖𝑖
𝑛

= 𝑏

 𝑖𝑗(𝑖≠𝑗) 𝑏𝑖𝑗

𝑛(𝑛 − 1)
= 𝑏′

(2) BlockAverage

Operation

Proposition: Maximum Likelihood Estimates (MLEs) of RKF models 

(BT, GT, HO, GO) are empirical means of MLEs of the KF.

[Ghahramani and Hinton, 1996] 

[K. Murphy, 1998]

(1) Learn Ground KF (3) Derive RKF



Experiments (Groundwater Models)

● Dataset: RRCA (Republican River Compact Administration)

● The model has measures (water levels) for 3078 water wells.

● The measures span from 1918 to 2007 (about 900 months).

● It has over 300,000 measurements.
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Relational Information (Clustering Wells)
by Spectral Clustering [Ng, Jordan, Weiss, 2001]
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Relational Information (Clustering Wells)
by Spectral Clustering [Ng, Jordan, Weiss, 2001]



Learning and Prediction with RKF
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Vanilla KF Relational KF

RMSE
(Root Mean Square Error)

5.10 4.36

Negative Log of Probability 
-log( P(data|pred) )

4.91 3.88

• Parameter Learning in simulation

• Prediction accuracy on the RRCA model
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Thank you!

Conclusions

 We show that relational obs may prevent RKFs from degenerating

 We present the first parameter learning algorithm for relational 

continuous models

 S/W download soon will be available at http://pail.unist.ac.kr/LRKF/

http://pail.unist.ac.kr/LRKF/


State Estimation: Vanilla KF vs Relational KF
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Dense Observations  No Degeneration
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