Learning Relational Kalman Filtering

Jaesik Choi*

Ulsan National Institute of Science and Technology *Speaker

Eyal Amir, Tiangfang Xu and Albert J.Valocchi University of Illinois at Urbana-Champaign

Kalman Filter

- Kalman Filter is an algorithm which produces estimates of unknown variables given a series of measurements (w/ noise) over time.
- Numerous applications in
 - Robot localization
 - Econometrics (time series)
 - Military: rocket and missile guidance
 - Autopilot
 - Weather forecasting
 - Speech enhancement

• ...

Kalman Filtering: an example

• Input statements

- John's house price was \$0.39M at 2014.
- Each year, John's house price increases 5%.
- John's house price is around the sold price.
- John's house is sold sporadically.

• Question: what is the price of John's house each year?

Kalman Filtering: an example

- Input statements
 - John's house price was \$0.39M at 2014.
 - Each year, **John**'s house price **increases 5%**.
 - John's house price is around the sold price.
 - John's house is sold sporadically.

Question: what is the price of John's house each year?

Kalman Filtering: an example

- Input statements
 - John's house price was \$0.39M at 2014.
 - Each year, **John**'s house price **increases 5%**.
 - John's house price is around the sold price.
 - John's house is sold sporadically.

Question: what is the price of John's house each year?

Relational Kalman Filtering (RFK):

[Choi Guzman, Amir, IJCAI-II] & [Ahmadi, Kersting, Sanner, IJCAI-II]

- Input statements
 - Town is a set of houses.
 - Town's houses have initial prices at 2014.
 - Each year, **Town**'s house prices **increase 5%**.
 - Town's house prices are around sold prices.
 - Town's houses are sold sporadically.

• Question: what is the prices of Town's houses each year?

Relational Kalman Filtering:

[Choi Guzman, Amir, IJCAI-II] & [Ahmadi, Kersting, Sanner, IJCAI-II]

- Input statements
 - Town is a set of houses.
 - Town's houses have initial prices at 2014.
 - Each year, Town's house prices increase 5%.
 - **Town**'s house prices are around sold prices.
 - Town's houses are sold sporadically.

Relational Kalman Filtering:

[Choi Guzman, Amir, IJCAI-II] & [Ahmadi, Kersting, Sanner, IJCAI-II]

- Input statements
 - Town is a set of houses.
 - Town's houses have initial prices at 2014.
 - Each year, Town's house prices increase 5%.
 - **Town**'s house prices are around sold prices.
 - Town's houses are sold sporadically.

Main Finding: Relational Obs Prevent RFK from Degenerating!

Main Theoretical Result

Theorem: For two rvs (X and X') in a set (atom) A of RKF

(1) X and X' have no obs for the previous k steps,
(2) At least one obs is made to the other rvs in A each time step

Then, for c>1, the following holds,

 $|Var(X) - Var(X')| \leq O(c^{-k}).$

When conditions (1) and (2) are satisfied,

We can recover a relational model out of a degenerated model!

Parameter Learning for RKF Models

Parameter Learning Problem:

- Input: o (Relational) Sets of random variables
 - A sequence of observations

 G_T , G_O : Gaussian Noise

 $U_t(x)$: user input for x at time t

 B_T, H_O : coefficients

Output: \circ Relational Parameters for RKFs (**B**_T, **G**_T, **H**_O, **G**_O)

Parameter Learning for RKF Models

Proposition: Maximum Likelihood Estimates (MLEs) of RKF models (B_T, G_T, H_O, G_O) are empirical means of MLEs of the KF.

In case of, the covariance matrix (e.g., G_T, and G_O)

 $\begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix}$ $\frac{\sum_{i} b_{ii}}{n} = b$ $\frac{\sum_{ij(i\neq j)} b_{ij}}{n(n-1)} = b'$ b'b'The MLE of RKF The MLE of KF (1) Learn Ground KF (2) BlockAverage (3) Derive RKF **Operation** [Ghahramani and Hinton, 1996] [K. Murphy, 1998]

Experiments (Groundwater Models)

- Dataset: RRCA (Republican River Compact Administration)
 - The model has measures (water levels) for 3078 water wells.
 - The measures span from 1918 to 2007 (about 900 months).
 - It has over 300,000 measurements.

Relational Information (Clustering Wells) by Spectral Clustering [Ng, Jordan, Weiss, 2001]

10

Relational Information (Clustering Wells) by Spectral Clustering [Ng, Jordan, Weiss, 2001]

Learning and Prediction with RKF

• Parameter Learning in simulation

• Prediction accuracy on the RRCA model

	Vanilla KF	Relational KF
RMSE (Root Mean Square Error)	5.10	4.36
Negative Log of Probability -log(P(data pred))	4.91	3.88

Conclusions

- We show that relational obs may prevent RKFs from degenerating
- We present the first parameter learning algorithm for relational continuous models
- S/W download soon will be available at <u>http://pail.unist.ac.kr/LRKF/</u>

Thank you!

State Estimation:Vanilla KF vs Relational KF

State Estimation:Vanilla KF vs Relational KF

Vanilla KF

Relational KF

Dense Observations \rightarrow No Degeneration

