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Kalman Filter

e Kalman Filter is an algorithm which produces estimates of
unknown variables given a series of measurements (w/ noise)
over time. : =

® Numerous applications in

Robot localization
Econometrics (time series)
Military: rocket and missile guidance

Autopilot

Weather forecasting

Speech enhancement



Kalman Filtering: an example
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® Input statements
® John’s house price was $0.39M at 2014.
e Each year, John’s house price increases 5%.

® John’s house price is around the sold price.

® John’s house is sold sporadically.

e Question: what is the price of John’s house each year?
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Relational Kalman Filtering (RFK):

[Choi Guzman, Amir, lJCAI-I ] & [Ahmadi, Kersting, Sanner, |JCAI-11]

® Input statements

e Town is a set of houses.

e Town’s houses have initial prices at 2014.

e Each year, Town’s house prices increase 5%.

e Town’s house prices are around sold prices.

e Town’s houses are sold sporadically.

e Question: what is the prices of Town’s houses each year?
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variances

Current Issue:

Sparse Observations - Model Degenerations
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variances

Main Finding:
Relational Obs Prevent RFK from Degenerating!
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Main Theoretical Result

Theorem: For two rvs (X and X’) in a set (atom) A of RKF
() X and X" have no obs for the previous k steps,

(2) At least one obs is made to the other rvs in A each time step

Then, for c>1, the following holds,
[Var(X) — Var(X")| < 0(c7¥).

variances

2017 2018 2019 2020

=2020-2015
Var(Xi8,) - Var(x3%,) < 0(c9)
When conditions (1) and (2) are satisfied,

We can recover a relational model out of a degenerated model!



Parameter Learning for RKF Models

Parameter Learning Problem:

Input: o (Relational) Sets of random variables

o A sequence of observations
G, Go: Gaussian Noise

Observation Models

Hidden o

o (oD

Transition Models

QD

X=X+ BrUf + Gy

U.(x): user input for x at time t B Hg : coefficients

Output: o Relational Parameters for RKFs (B, G+, Hp, Go)



Parameter Learning for RKF Models

Proposition: Maximum Likelihood Estimates (MLEs) of RKF models

B, G, H,, G,) are empirical means of MLEs of the KF.
™ 91 Mo ¥o p

In case of, the covariance matrix (e.g., G, and G,)
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The MLE of KF The MLE of RKF

(1) Learn Ground KF (2) BlockAverage (3) Derive RKF

[Ghahramani and Hinton, 1996] Operation
[K. Murphy, 1998]



Experiments (Groundwater Models)

e Dataset: RRCA (Republican River Compact Administration)
e The model has measures (water levels) for 3078 water wells.
® The measures span from 1918 to 2007 (about 900 months).

e It has over 300,000 measurements.
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Relational Information (Clustering Wells)
by Spectral Clustering [Ng, Jordan,Weiss, 2001]
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Relational Information (Clustering Wells)
by Spectral Clustering [Ng, Jordan,Weiss, 2001]
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Learning and Prediction with RKF

* Parameter Learning in simulation
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* Prediction accuracy on the RRCA model
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(Root Mean Square Error)
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Conclusions

" We show that relational obs may prevent RKFs from degenerating

" We present the first parameter learning algorithm for relational
continuous models

= S/W download soon will be available at http://pail.unist.ac.kr/LRKF/

Thank you!


http://pail.unist.ac.kr/LRKF/

State Estimation:Vanilla KF vs Relational KF
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State Estimation:Vanilla KF vs Relational KF
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Dense Observations > No Degeneration
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