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ABSTRACT 

 

Abstractive Summarization is a challenging task in Text Summarization field. Most work 

on summarization task focus on minimizing negative log-likelihood objective function. This leads 

to difficulty in generating highly abstractive summaries if the dataset does not have good reference 

summaries. In this paper, we propose a model that follows a three-step workflow of understanding 

and generating abstractive summarization, which includes understanding hidden representation of 

the data samples by using Conditional Variational Autoencoder model; giving guidance and 

rewards for the model going in right direction; and using top-𝑝 random sampling to generate highly 

abstractive summaries based on the learned features and hidden latent space. We show that having 

deeper understanding about the structure can obtain higher abstractedness while keeping the same 

semantic understanding of the document.
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CHAPTER 1 

  

INTRODUCTION 

 

Text summarization is a task targeting at shortening long documents into concise, coherent and fluent 

versions while maintaining important information concurrently. Automated text summarization refers to 

using machines to learn and execute the task systematically and is common among a diverse family of 

Natural Language Processing (NLP) tasks. 

There are two fundamental approaches for Text Summarization: extractive and abstractive 

summarization. Extractive summarization is the task of extracting crucial sentences and major phrases to 

combine them into a summary by using statistic, graphical model based or neural network approaches. 

Abstractive summarization is the task of producing novel words, paraphrasing, and shrinking the original 

document texts.  

In this work, we focus on abstractive summarization, which needs more complex analysis and more 

advanced natural language algorithm. Most of recent Text Summarization tasks are based on deep learning 

or neural network and the structure is seq2seq model with encoder-decoder framework, in which encoder 

is used for building representation for words, such as word embeddings like word2vec or GloVe, and 

processing those representations to capture most information from the original document as possible. 

Decoder, meanwhile, receives encoder’s representation and subsequently develop it into a probability 

distribution over the vocabulary. From the distribution, we can generate most proper words that can 

summarize the input document with the negative log-likelihood objective function. 

Deep learning approaches range from Recurrent Neural Network (RNN), Long Short-term Memory 

(LSTM) to Transformer-based recently. Most work of abstractive summarization task only focus on cross-

entropy loss with reference summary while training. Therefore, other techniques from Conditional 

Variation Autoencoder (CVAE) and Reinforcement Learning (RL) are also used with new losses for 

improving other aspects of the task. Recent achievements on Transformer are gaining more attention with 

better performance than RNN or LSTM due to better ability of capturing documents’ underlying structures.  

Despite better achievements of supervised summarization task with deep neural network models, recent 

models still lean towards heavily extractive if the dataset does not have well-abstractive-formed reference 
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summaries. The goal of this paper is experimenting a three-step workflow of understanding and generating 

better abstractive text summary includes:  

1)  Understand and learn inner document latent vector spaces, 

2) Understand the goal of the task with rewards and punishments system, 

3) Generate highly abstractive summary while preserving semantic similarity in meaning.  

Consequently, we propose a new model that combines CVAE and reward method from RL using a 

pretrained baseline model that follows the above workflow to improve abstractedness while preserving 

semantic similarity score comparing to the baseline. 

This paper includes following chapters. Chapter 2 revisits some background concepts of Transformer 

model, Conditional Variational Autoencoder algorithm and reward system in Reinforcement Learning. 

Chapter 3 mentions about related work in Text Summarization. Chapter 4 proposes our model that follows 

the same three-step workflow for better understanding of Text Summarization task. Chapter 5 describes the 

experiments’ settings, dataset and results. Finally, chapter 6 wraps up with the conclusion of the thesis.  
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CHAPTER 2 

 

BACKGROUND 

 

2.1 Transformer-based Model 

2.1.1 Development of Seq2Seq models and attention mechanisms 

Sequence-to-sequence (seq2seq) models in NLP are the models that can transform sequences of a specific 

type to another type. For instance, translation of English sentences to Spanish sentences is a sequence-to-

sequence task. 

Recent work on seq2seq mostly concentrate on neural network methods which process sentences by 

creating words vector space as representation. The model then can measure information from those 

representations of words, phrases or sentences and discover the context from the aggregated information. 

After being introduced in 2014, RNN-based seq2seq models have gathered a lot of attention for its 

ability of processing sequential data, numbers, texts, video frames or even audios, for example. Considering 

each computational time step 𝑡 as a position state for generation, RNN can generate a sequence of hidden 

states ℎ𝑡 as a function 𝑓 of the previous hidden state ℎ𝑡−1 and input data for position 𝑡: 

 ℎ𝑡+1 = 𝑓(𝑥𝑡 , ℎ𝑡) (1) 

From the hidden states, they can generate the output at each time step 

 𝑜𝑡 = 𝑏 + 𝑊𝑡ℎ𝑡, (2) 

with weights 𝑊𝑡 and bias 𝑏 as learnable parameters. The performance of these seq2seq RNN-based models 

was further improved with the addition of the Attention Mechanism [Luong et al, 2015] and with the 

evolution to LSTM models.  

RNN is a good model for sequences, but there are unavoidable limitations of seq2seq models when it 

has difficulties of handling long-range dependencies in sequence, and parallelizing when analyzing long 

documents becomes challenging due to its nature structure. 
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2.1.2 Transformer Architecture 

In 2017, Transformers model [Vaswani et al, 2017] is proposed to solve the issues of parallelizing tokens 

in documents. Despite a combination between Convolutional Neural Networks (CNN) and attention 

mechanism, Transformer still has the same encoder-decoder architecture as other sequence neural language 

models. Principally, Transformer encoder transforms a sequence of input data 𝐱 = (𝑥1, … , 𝑥𝑛) into a multi-

dimension continuous representation 𝐜 = (𝑐1, … , 𝑐𝑛). The decoder then uses 𝐜 as its input to generate 

output sequence 𝐲 = (𝑦1, … , 𝑦𝑚)  by using auto-regressive method, which is using previous generated 

output as the next input for next time step. 

Transformer encoder architecture comprises of multi-blocks, and each block basically includes two 

layers: self-attention and a feed forward neural network. Decoder has the same structure, except it has 

another layer of cross-attention between the two previous layers, which helps it to address attention to the 

input, not only the previous words itself. 

 

Figure 2.1. Transformer architecture in Text Summarization 
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Self-attention mechanism  

For NLP tasks, we first transform all input words into a vector space through some embedding algorithms. 

As in other seq2seq models like RNN, it is important for the model to have a mechanism for attention to all 

of the words and sentences in a long document after receiving the embedding space. The self-attention 

architecture in each block of Transformer helps the model get better attention than earlier work. After 

passing sentences into Transformer and receiving tokens embeddings, we will calculate the weights 

concurrently. Each token weight is computed by a combination of other relevant ones. 

Particularly, given token 𝑖  and word embedding 𝑥𝑖 , we can get the key, query and value vectors 

𝑘𝑖, 𝑞𝑖, 𝑣𝑖 by multiplying them to learnable weights 𝑊𝐾 , 𝑊𝑄 , 𝑄𝑉 respectively 

 𝑘𝑖 = 𝑥𝑖𝑊𝑘 ,   𝑞𝑖 = 𝑥𝑖𝑊𝑄 ,   𝑣𝑖 = 𝑥𝑖𝑄𝑉 (3) 

The attention weights are calculated by distribution of dot product between keys and queries 𝑞𝑖 ⋅ 𝑘𝑖, 

then the distribution weights will pass to the values so we can get new values for the documents. Writing 

in matrix form, the formula will be 

 
Attention(𝑄, 𝐾, 𝑉) = softmax (

𝑄𝐾𝑇

√𝑑𝑘

) 𝑉 (4) 

with 𝑑𝑘 is key dimension, using for stabilizing gradients while training. The dot product between queries 

and keys can also generate attention matrix, with a meaning of where each word looking at in the current 

context. 

Cross-attention mechanism 

Like encoder, Transformer decoder uses the same self-attention structure, but with an addition of another 

layer called cross-attention or co-attention between encoded input and current decoded output. The formula 

is the same as self-attention, but we use key from encoder and query, value from decoder. The point of this 

layer is to make decoder having a proper attention to the input data, or the connection between encoder and 

decoder is represented by this layer. 
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2.2 Conditional Variational Autoencoder 

2.2.1 Variational Autoencoder 

Autoencoder is a neural network that intends to learn representation for input data space. The goal of 

autoencoder is to learn the hidden compressed latent space of the data by an encoder. From that compressed 

space, we will try to reconstruct the original data after feeding the latent representation to the decoder. Due 

to the bottleneck in the process of learning latent space with minimum loss, we can extract functional 

features of original input data, and allow the model to explore broader space of data with similar features. 

However, with autoencoder, there is a gap of understanding the connection between learning 

representations and generating new contents. The difficulty stands in the unregularized latent space, which 

relies on input data distribution. Problem in guarantee of the compatibility between latent space priori with 

content generation process is intractable for the model to solve by itself. 

To resolve the issues, instead of trying to reduce dimension and encode the input values into separate 

points in latent space, we can learn about the distribution over that latent space. Assume that we have a 

priori distribution condition for 𝑧 ~ 𝑃𝜃(𝑧), in which 𝑧 is an unobserved continuous random variable, and 

data 𝑋 will be generated conditioned on 𝑧, or 𝑋 ~ 𝑃𝜃(𝑋|𝑍). In this case, 𝑧 becomes the hidden probabilistic 

representation of 𝑋, or we can interpret it as 𝑞𝜙(𝑧|𝑥). The encoder will try to learn 𝑞𝜙 and decoder trying 

to learn 𝑃𝜃(𝑋|𝑧), which means decoding the hidden 𝑧 into the input space again. This algorithm, called 

Variational Autoencoder (VAE), helps the model avoid overfitting and get valuable features of latent space 

for better generation. The model with VAE algorithm is trained by maximizing this objective function: 

 ℒ𝜃,𝜙(𝑥, 𝑧) = 𝔼𝑧~𝑞𝜙(𝑧|𝑥)[log 𝑝𝜃(𝑥|𝑧)] − 𝒟𝐾𝐿 (𝑞𝜙(𝑧|𝑥)‖𝑝(𝑧)). (5) 

The first term is the reconstruction loss or expected value of log likelihood of the data, taken on the 

distribution of generating 𝑧 from the hidden distribution. This term handles the reconstruction for the 

original data from the latent space. The second term is the Kullback-Leibler divergence between the hidden 

distribution 𝑞𝜙  and the priori condition on 𝑧 , 𝑝(𝑧) . This term measures how divergent between two 

distributions, or how much information that can get lost if we use 𝑞 as prior for 𝑧. Figure 2.2 shows the 

general form of Variational Autoencoder in text reconstruction task. 
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Figure 2.2. Variational Autoencoder in text reconstruction 

2.2.2 Conditional Variational Autoencoder 

VAE is good for giving prior distribution for the data and its latent space to guide the reconstruction better. 

However, with VAE, it is difficult for human to constrain the data model will generate after training. For 

example, if we already trained VAE well for summarization task, it could make concise and grammatically 

correct summaries, but we could not control what content of sentences it will generate. The problem is 

because we could not tell the model which topic or which specific collections of words it should generate 

later. Another problem is NLP tasks like text summarization or machine translation is they require the 

model to output each token based on earlier tokens. Therefore, unlike VAE when reconstructing original 

data, we have two conditions on the generation: input documents and the output we need to generate. 

For this, VAE architecture should be changed to adapt specific tasks. Given input original documents 

𝑋, we want the model to produce summary 𝑌. In this case, VAE process will be modified as following: 

given observations including input variable 𝐱, and latent variable 𝐳 is created from prior 𝑝𝜃(𝐳|𝐱). We have 

output variable 𝐲 generated from distribution 𝑝𝜃(𝐲|𝐱, 𝐳). The encoder then will try learning the hidden 

representation distribution 𝑞𝜙(𝐳|𝐱, 𝐲) giving condition on 𝐲. The decoder then will try to decode the hidden 

latent variable and produce output 𝐲 by learning distribution 𝑝𝜃(𝐲|𝐳, 𝐱). This model is called Conditional 

Variational Autoencoder (CVAE), in which it takes one more variable as condition to constrain the 

generation of the model. Figure 2.4 shows the graph of relationship between 𝐱, 𝐲 and 𝐳 in CVAE. 

 

Figure 2.3. Example of Variational Autoencoder in text reconstruction  
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The objective function of CVAE is similar to VAE, except there is one more condition, or variable to 

add: 

 ℒ𝜃,𝜙(𝑥, 𝑧) = 𝔼𝑧~𝑞𝜙(𝑧|𝑥,𝑦)[log 𝑝𝜃(𝑦|𝑥, 𝑧)] − KL (𝑞𝜙(𝑧|𝑥, 𝑦)‖𝑝(𝑧|𝑥)). 

 

Figure 2.4. Conditional Variational Autoencoder graph for ELBO objective  

[Zhang et al, 2016] 

(6) 

 

2.3 Sampling techniques 

Nucleus (Top-p) filtering 

Top-𝑘 sampling is a technique of choosing most likely 𝑘 words from the distribution. Instead of choosing 

a fixed subset of words, top-𝑝 (nucleus) sampling [Holtzman et al, 2019] chooses the smallest possible 

subset of words whose cumulative probability starts to exceed 𝑝. 

Other sampling techniques 

Besides top-𝑝 and top-𝑘, beam search is also the most common strategy to sample. However, top-𝑝 gives a 

dynamic subset sizes to choose the words comparing to the other two, which is good for generating long 

sequence. 

 

2.4 Metrics in NLP 

ROUGE score 

ROUGE stands for Recall-Oriented Understudy for Gisting Evaluation, which is used to measure the 

overlapping between the generated sequence and the reference sequence. It calculates how much of the 
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generated one can recover the ground-truth texts using both precision and recall to report F-measure. There 

are two types of ROUGE score that are common for NLP task like summarization: 

- ROUGE-𝑁: measures the n-gram overlap (which means how many continuous of n tokens are 

overlapping with the reference) 

- ROUGE- 𝐿 : measure the longest matching sequence of words by using Longest Common 

Subsequence Problem. Briefly, it computes the largest number of increasing (in terms of order) in-

sequence tokens that is similar to the reference without consecutive matching. 

The following two metrics are not decided by the tokens but are dedicated tasks in NLP to measure the 

semantic meaning and similarity. 

 

Semantic Text Similarity-Benchmark 

This task is trained on a dataset of sentence pairs drawn from news headlines, video and image captions, 

and natural language inference data [Cer et al, 2017]. Each pair has an annotation of similarity score from 

0-5 and evaluated using Pearson and Spearman correlation coefficients. 

 

Recognizing Textual Entailment (RTE) 

RTE is another task to compare semantic meaning or directional relation between two texts, particularly 

deciding whether the meaning of hypothesis text can be inferred from another text. 

 

Novel n-grams 

Novel n-grams is the metric for testing how much novel words and tokens the model can generate 

comparing to the original document.  
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CHAPTER 3 

 

RELATED WORK 

[See et al, 2017] used LSTM with Attention and pointer-generator mechanism to improve performance of 

RNN sequence-to-sequence Text Summarization. However, the Transformer based models have resulted 

in better performance improvement. Recent encoder-decoder approaches pre-trained on masked input 

objective are used to have better language understanding for summarizing documents. 

 

PEGASUS [Zhang et al, 2020] proposed sentence-masked pretrained on large text corpora with the 

objective of generating output sequence from remaining sentences. 

 

ProphetNet [Yan et al, 2020] proposed self-supervised objective approach by optimizing prediction of next 

𝑛 tokens simultaneously pretrained on a large-scale dataset. 

 

BART [Lewis et al, 2020] proposed a denoising autoencoder approach as pretrained encoder-decoder 

model. Text is corrupted with a noising function and the model tries to reconstruct the original text. Text 

Summarization is the fine-tuned task with the document is kept as original un-denoised text. 

 

       Recently, [Wang et al, 2019] proposed a combination of Variational Autoencoder and Transformer for 

Text Filling task. With BART as our pretrained model, we also incorporate Variational Autoencoder to 

Transformer to enhance the variation for Text Summarization and use Reinforcement Learning reward 

system to evaluate the quality of Text Summarization results.  
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CHAPTER 4 

 

CONDITIONAL VARIATIONAL AUTOENCODER WITH 

REWARD AS GUIDANCE FOR TEXT SUMMARIZATION 

 

In chapter 2, we have introduced some models, techniques and algorithms that could serve as backgrounds 

for each of our steps in the workflow of understanding the structure and generating summaries. We will 

exploit the advantages of those fundamental models and algorithms and propose a model that can make 

summarization having higher variance and more controllable with these steps: 

1) Understanding and learning the inner structure of documents in summarization task, 

2) Make guidance for model with rewards and penalties while training, 

3) Generate summaries by sampling and control levels of extractive and abstractive 

We use BART in chapter 3 as the baseline for our model, due to the combination of BERT encoder and 

GPT-2 decoder for autoregressive in the model. 

4.1. Learning inner representations of documents 

Documents training in deep neural network can be represented as a combination of word embeddings. 

However, document embeddings have remarkably high dimensions and are variant in terms of lengths. 

Transformer-based summarization models tend to use the embeddings directly for training, due to its strong 

attention mechanism, and force the machine to focus on a narrow search space for generating text. Assume 

that there are unobserved continuous latent random variables 𝑧𝑒 and 𝑧𝑑 as our hidden representations of 

encoder (as for original documents) and decoder (as for reference summary) respectively, and the latent 

variables are generated from distributions 𝑧𝑒 ~ 𝑁(𝜇𝑒 , 𝜎𝑒), 𝑧𝑑  ~ 𝑁(𝜇𝑑 , 𝜎𝑑). Since summary is a concise way 

of expressing the original documents, we can apply CVAE method and make the model learns to minimize 

divergence between these two distributions. 

With the addition of CVAE, we can make general latent vector spaces that characterize the 

distributions of all data samples. Given input variable 𝐱 as the original long documents vector space, and 𝐲 

as the reference summary vector space. We will try to learn the hidden representations 𝑧𝑒 and 𝑧𝑑 to make 

the model has the ability of generating diverse summaries. Like practical conventional CVAE method, we 



12 

will assume the distributions follow multivariate Gaussian distributions. Figure 4.1 shows our combination 

of CVAE and Transformer model for Text Summarization. 

 

Figure 4.1. Our Transformer-CVAE graph 

Assume that 𝑓(𝑥) and 𝑔(𝑦) are encoder features and decoder features after running through baseline 

Transformer model. We calculate the context vector of both encoder and decoder by using mean of all 

features. To adapt the conditional probability of 𝑧𝑑𝑒𝑐|𝑥, 𝑦, we concatenate both features first and compute 

the mean vector for context: 

 𝑐𝑡𝑥𝑒𝑛𝑐 = mean([𝑓(𝑥)]) 

𝑐𝑡𝑥𝑑𝑒𝑐 = mean([𝑓(𝑥); 𝑔(𝑦)]) 

(7) 

We put two multilayer perceptrons (MLP) on top of encoder and decoder features to make model learn 

(𝜇, 𝜎) of each encoder/decoder: 

 [
𝜇𝑒

𝜎𝑒
] = MLPe(𝑐𝑡𝑥𝑒𝑛𝑐), 

[
𝜇𝑑

𝜎𝑑
] = MLP𝑑(𝑐𝑡𝑥𝑑𝑒𝑐). 

(8) 

Although model cannot backpropagation through random sampling, we can sample 𝑧 from mean and 

variance values here using: 

 𝑧 = 𝜎 ⋅ 𝜖 + 𝜇, (9) 

with 𝜖 ~ 𝑁(0,1) . This technique is called reparameterization trick, which allows the model to do 

backpropagation even though we are random sampling 𝑧. Given 𝑠(𝑦) is the decoder features, or the states 
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of sequence 𝑦 after running through Transformer decoder. After getting vector 𝑧𝑒 from encoder, we get 

new decoder features by conducting a cross-attention layer, which is used in Transformer decoder, between 

𝑧 and the summary or decoder embedding 𝑔𝑒𝑚𝑏𝑒𝑑(�̂�), with �̂� is the new generated sequence from the old 

𝑠(𝑦), which is provided before going through Transformer decoder in BART.  

 𝑠(�̂�) =  cross_attention(𝑧𝑒 , 𝑔𝑒𝑚𝑏𝑒𝑑(�̂�)) (10) 

Finally, we concatenate the new feature to the old decoder features to extract the output distribution 

over vocabulary for each token by feeding the features to the final LSTM and linear layer.  

 𝑜𝐿𝑆𝑇𝑀 = LSTM([𝑠(�̂�); 𝑠(𝑦)]), 

𝑜𝑑 = 𝑏 + 𝑊𝑜 

(11) 

Normally, 𝑧  vector can be concatenated to decoder features to train for generating vocabulary 

distribution. The reason we do cross-attention together with LSTM here is for step 2 of the workflow, 

described in Section 4.2, in which we need to generate new tokens in training step later. The model is 

presented as in the following figure: 

 

Figure 4.2. Detail structure of CVAE-Transformer for Text Summarization 
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Loss function of the above model is similar to CVAE objective function: 

 loss𝐶𝑉𝐴𝐸(𝑥, 𝑦) = −𝔼𝑧~𝑞𝜙(𝑧|𝑥)[log 𝑝𝜃(𝑥|𝑧)] + 𝒟𝐾𝐿 (𝑞𝜙(𝑧|𝑥, 𝑦)‖𝑝(𝑧|𝑥)). (12) 

Empirical loss function with 𝑧𝑒 and 𝑧𝑑 is rewritten as 

 

loss𝐶𝑉𝐴𝐸(𝑥, 𝑦) = −
1

𝐿
∑ log 𝑝𝜃(𝑦|𝑥, 𝑧(𝑙))

𝐿

𝑙=1

+ 𝒟𝐾𝐿 (𝑞𝜙(𝑧𝑑|𝑥, 𝑦)‖𝑝(𝑧𝑒|𝑥)). (13) 

with 𝐿  is the number of samples and 𝑧(𝑙) = (𝑧𝑒
𝑙 , 𝑧𝑑

𝑙 ) = ℱ(𝑥, 𝑦, 𝜖(𝑙)), with 𝜖(𝑙) ~ 𝑁(0,1) is described in 

reparameterization trick, and ℱ is two multilayer perceptrons (MLP) above. 

 

4.2. Guidance model by giving rewards 

Given a model with a CVAE algorithm for learning the hidden representation, our model now relies on the 

generation from latent variable 𝑧. To make the generative process understands deeper about how it should 

generate words, we propose adding a process of evaluating the ability of the model without teacher-forcing 

log-likelihood method. The process is similar to Reinforcement Learning if we see Text Summarization as 

a Reinforcement Learning (RL) task:  

1) At time step 𝑡, we generate a state as decoder features 𝑠𝑡, 

2) Model does the action of generating predicted word �̂�𝑡+1 by the policy, which is the probability 

distribution 𝑝(�̂�𝑡+1|𝑠𝑡), 

3) Model gives the reward 𝑟𝑡 for the action of choosing �̂�𝑡+1, 

4) Run the model with predicted word �̂�𝑡+1 as input and we get new decoder features 𝑠𝑡+1.  

Our goal of training is minimizing the objective function, which is in the form of negative expected 

reward [Rennie et al, 2017]: 

 

𝐿(𝜃) = −
1

𝑇
∑ 𝑟𝑡(�̂�𝑡)

𝑇

𝑡=1

,  𝛻𝐿(𝜃) ≈ −𝑟(�̂�)𝛻𝜃 𝑙𝑜𝑔 𝑝𝜃(�̂�) (14) 

with 𝑇 is the length of the generated summary. 

This new objective function is based on the generation of the sequence by our Transformer + CVAE 

model and we will calculate the rewards for each action of generating word.  

While RL works well with RNN and LSTM, it is not resource-efficient to combine with Transformer-

based model since Transformer is already a large model, and it takes huge memory when generating each 
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token while training. To alleviate the problem, we propose a method of generating random sequence 

window in each sample, which is motivated from text filling task. Instead of generating a whole summary, 

we randomly masking a window of reference tokens, which has smaller size than the reference summary 

length, and make the model try to predict the masking tokens without looking at reference ones.  

 

Figure 4.3. Reward system for CVAE-Transformer 

Each generated token will be transformed to embedding vector through decoder embedding layer and 

conduct cross-attention with latent vector 𝑧 at section 4.1. Through the top LSTM layer, we can construct 

new features for the next token. With this method of combining random sequence window and decoder 

embedding-latent variable cross-attention, we could avoid running a whole decoder while training. 

The reward at each time step we choose is ROUGE score and Semantic Text Similarity (STS) score, 

which is computed via RoBERTa, a pretrained multi-task model finetuned with STS-B task. ROUGE score 

is a combination of ROUGE-1, ROUGE-2 and ROUGE-𝐿. We compute the score by comparing a sequence 

of previous words and the current generated word with reference words. Since the first masking tokens are 

less sensitive to low score, we give it higher weights than the later tokens by giving it a discount value  𝜆 =

0.99 . Assuming the random window starts at time step 𝑡0,  the formula for reward at time step 𝑡  is 

represented as following: 

 
𝑟𝑟𝑜𝑢𝑔𝑒 =

1

4
(𝑟𝑟𝑜𝑢𝑔𝑒1 + 2 ⋅ 𝑟𝑟𝑜𝑢𝑔𝑒2 + 𝑟𝑟𝑜𝑢𝑔𝑒𝐿) 

𝑟𝑡 =
1

2
𝜆𝑡−𝑡0(𝑟𝑟𝑜𝑢𝑔𝑒 + 𝑟𝑠𝑡𝑠) 

(15) 
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Applying the reward to (17), we have the final objective functions for the model: 

 
𝐿𝑐𝑣𝑎𝑒(𝜃) = −

1

𝑇
∑ log 𝑝𝜃 (𝑦𝑡+1|𝑥𝑡, 𝑧𝑡

(𝑙)
)

𝑇

𝑡=1

+ 𝛽 KL (𝑞𝜙(𝑧𝑑|𝑥, 𝑦)‖𝑝𝜃(𝑧𝑒|𝑥)), 

𝐿𝑟(𝜃) = −
1

𝑇0 − 𝑡0
∑ 𝑟𝑡(�̂�𝑡)

𝑇0

𝑡=𝑡0

, 𝛻𝐿(𝜃) ≈ −𝑟(�̂�)𝛻𝜃 𝑙𝑜𝑔 𝑝𝜃(�̂�), 

(16) 

with [𝑡0, 𝑇0] ⊆ [1, 𝑇] is the window for generating word. Figure 4.3 illustrates an example of how random 

window sequence works with rewards system. 

 

4.3 Generating summaries by sampling 

The last step of the workflow is how we can sample during training and inference stage and make the model 

becomes more abstractive. At RL step in 4.2, we need to predict the word by probability distribution at each 

time step.  

Normally we can use argmax to get the words. However, to make our model generate abstractive but 

coherent sentence and also adapt with the reward system, we give other candidates a chance based on the 

probability distribution and check whether the chosen candidate can generate high reward or not. Moreover, 

sampling gives the model higher variance of possibilities. Therefore, we use sampling by probabilities 

generated from the model at each time step. We also do not want the model choosing outlier words, or 

unlikely words with low probabilities and break the coherent story we are generating. 

From the background in 2.3, we choose top-𝑝 for sampling due to its ability of having dynamic 

candidates in each step and not sensitive to flatten distribution. With top-𝑝 and CVAE, we can have a model 

with high ability of generating abstractive summary. 

Given a prior text and having a probability distribution for predicting next word, the task is how we 

can choose the next word to make our current passage and future passage becomes naturally and as 

abstractive as possible. The problem can be re-written as following: given context with a sequence of 𝑚 

tokens {𝑥1, … , 𝑥𝑚}, the task is to generate 𝑚 + 𝑛 continuous tokens {𝑥𝑚+1, … 𝑥𝑚+𝑛}. Assume that we have 

probability distribution from the beginning to the last tokens as  

 
𝑝(𝑥1:𝑚+𝑛) = ∏ 𝑝(𝑥𝑖|𝑥1 … 𝑥𝑖−1)

𝑚+𝑛

𝑖=1

. (17) 

       [Holtzman et al, 2019] proposed a stochastic decoding method for sampling based on this 

decomposition, which is based on the shape of the probability distribution. At time step 𝑖 , given a 
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distribution 𝑝(𝑥|𝑥𝑖−1), we define a top-p subset of vocabulary 𝑉(𝑝) ⊂ 𝑉 as the smallest set such that 

 ∑ 𝑝(𝑥|𝑥1:𝑖−1)

𝑥∈𝑉(𝑝)

≥ 𝑝 (18) 

Let 𝑝′ = ∑ 𝑝(𝑥|𝑥1:𝑖−1)𝑥∈𝑉(𝑝) , the distribution is re-calculated as 

 
𝑝′(𝑥|𝑥1:𝑖−1) = {𝑝(𝑥|𝑥1:𝑖−1)/𝑝′, if 𝑥 ∈ 𝑉(𝑝) 

0                                   otherwise 
 (19) 

The task can be briefly summarized as selecting the highest probability tokens whose cumulative 

probability surpass the threshold 𝑝. 
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CHAPTER 5 

 

EXPERIMENTAL RESULTS 

 

In this section, we tested the model with CNN-Dailymail dataset, which comprises of 287K documents and 

articles with 3-4 highlights in each document to summarize the contents of the article. The pre-trained 

model we used is BART finetuned on 5 epochs. 

 

5.1 Experimental setup 

First, we train the CVAE and freeze BART parameters to make the latent variable 𝑧 understands the current 

model condition. After training for 2 epochs, we trained the whole model with CVAE and RL loss for 1 

epoch. 

 

ROUGE score 

Supervised Learning ROUGE score 

Model ROUGE-1 ROUGE-2 ROUGE-3 

pgen𝑐𝑜𝑣 + recorder 40.44 18.15 36.9 

PEGASUS 44.17 21.47 41.11 

BART (Baseline) 44.16 21.28 40.90 

BART + CVAE – Reward 40.81 17.58 37.61 

Table 5.1. ROUGE scores comparisons 
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STS Score 

Semantic Text Similarity Score (comparing with reference summary) 

BART (Baseline) 0.3279 

BART + CVAE – Reward  0.3253 

Table 5.2. STS-B scores comparison 

 

RTE Score  

Recognizing Textual Entailment 

BART (Baseline) 0.2082 

BART + CVAE – Reward  0.1894 

Table 5.3. RTE scores comparison 

 

Novel n-gram score 

Novel n-gram 

Model 1-gram 2-gram 3-gram 
2-gram (w/o 

overlap) 

3-gram (w/o 

overlap) 

Reference 13.48 51.48 73.92 2.69 0.61 

BART 

(Baseline) 
1.61 11.14 21.17 0.17 0.02 

BART + 

CVAE–Reward 
10.57 37.92 55.63 2.32 0.57 

Table 5.4. Novel 𝑛-gram scores comparison 
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Examples of results: 

Article 

The student was identified during an investigation by campus police and 

the office of student affairs and admitted to placing the noose on the tree 

early Wednesday, the university officials said … (cont)… Last month a 

fraternity at the University of Oklahoma had its charter removed after a 

video surfaced showing members using the N-word and referring to 

lynching in a chant. Two students were expelled (cont)… 

BART +  

CVAE - Reward 

The student is "no longer on campus" and will face student conduct review, 

the university says.   The student admitted to hanging on a tree with the 

noose, the university says.   Two students were expelled after being caught 

on camera using the N-word.   The incident is one of several recent racist 

events to affect college students. 

Article 

Filipinos are being warned to be on guard for flash floods and landslides as 

tropical storm Maysak approached the Asian island nation Saturday. Just a 

few days ago, Maysak gained super typhoon status thanks to its sustained 

150 mph winds. It has since lost a lot of steam as it has spun west in the 

Pacific Ocean. It boasts steady winds of more than 70 mph (115 kph) and 

gusts up to 90 mph as of 5 p.m. (5 a.m. ET) Saturday …(cont)… 

Authorities took preemptive steps to keep people safe such as barring 

outdoor activities like swimming, surfing, diving and boating in some 

locales, as well as a number of precautionary evacuations. …(cont)… Dry 

told PNA, "We do not know what the impact will be once it will make 

landfall." 

BART 

Tropical storm Maysak is heading west in the Pacific Ocean. It boasts 

steady winds of more than 70 mph (115 kph) and gusts up to 90 mph. It's 

expected to make landfall Sunday morning on the southeastern coast of 

Isabela province. Authorities take preemptive steps to keep people safe 

such as barring outdoor activities. 

BART +  

CVAE - Reward 

Maysak is the latest tropical storm to reach the Philippines.   The storm has 

sustained 150 mph winds and is driven west in the Pacific Ocean.   

Authorities have banned outdoor activities such as swimming, surfing, 

diving and boating.   Maysak is expected to make landfall Sunday morning. 

Article The Palestinian Authority officially became the 123rd member of the 

International Criminal Court on Wednesday, a step that gives the court 

jurisdiction over alleged crimes in Palestinian territories. The formal 
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accession was marked with a ceremony at The Hague, in the Netherlands, 

where the court is based. 

BART The Palestinian Authority becomes the 123rd member of the International 

Criminal Court. The formal accession was marked with a ceremony at The 

Hague, in the Netherlands, where the court is based. 

BART + 

 CVAE - Reward 

Palestinian Authority joins International Criminal Court, in a formal 

accession ceremony at the Hague, in the Netherlands. 

Article 

Michele Bachmann is comparing President Obama to the co-pilot of the 

doomed Germanwings flight. …(cont)… Andreas Lubitz, the co-pilot of 

Germanwings Flight 9525, is accused by authorities of deliberately 

crashing the plane in the French Alps. He died in the crash along with 149 

other crew and passengers. Many comments posted on her Facebook page 

blasted the former representative. …(cont)…  The congresswoman, who 

sought the GOP presidential nomination in 2012, said Obama had a 

"condescending smile on his face and laughed at me." 

BART 

Michele Bachmann is comparing President Obama to the co-pilot of the 

doomed Germanwings flight. Bachmann: "With his Iran deal, Barack 

Obama is for the 300 million souls of the United States what Andreas 

Lubitz was for the 150 souls on the German Wings flight“. Many 

comments posted on her Facebook page blasted the former representative. 

BART +  

CVAE - Reward 

Michele Bachmann is criticized for comparing President Obama to the co-

pilot of the Germanwings flight.   "He is for the 300 million souls of the 

United States what Andreas Lubitz was for the 150 souls on the German 

Wings flight," she says. Andreas Lubitz was involved in a crash in March, 

and Lubitz died in the crash.   Bachmann also said Obama was 

"condescending" to her after a meeting in 2012. 

Table 5.5. Summarization result examples 
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CHAPTER 6 

 

CONCLUSION 

 

In this research, we propose a novel approach for Abstractive Summarization using understanding of latent 

representations of documents, guidance with semantic meaning and generating summary with random 

sampling. 

Our test proves that having good understanding in hidden representations together with the guidance 

of external metrics in Reinforcement Learning can help model generate highly abstractive summary. 

Latent representation in Conditional Variational Autoencoder makes the model get the global critical 

features from documents. Semantic and ROUGE rewards guide the model generating correct 

information. Random sampling enhances abstractedness of generated summary.  

Despite of not outperforming in ROUGE score, our model shows that it can generate higher abstractive 

summaries while still keep semantic similarity on par with baseline model. The model could be used as a 

useful paraphrasing tool for baseline model. 

From the results of the experiments, we can also see that BART is a very extractive model when trained 

on CNN-Dailymail dataset. Our model is an example of an abstractive summarization model which can 

have many ways for generating summaries rather than relying on the reference ones. Therefore, ROUGE 

score might not be an important metric for abstractive summarization. 
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