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Abstract

Pre-trained language models have widely been used to solve various natural language processing

tasks. Especially, masked neural language models, which are composed of huge neural networks

that are trained to restore the masked tokens, have shown outstanding performance in many tasks

including text classification and question answering. However, it is challenging to identify what

knowledge are trained inside due to the ‘black box’ nature of deep neural networks with numerous

and intermingled parameters. There have been recent studies that try to approximate how

much knowledge is learned in masked neural language models. However, a recent study reveals

that the models do not precisely understand semantic knowledge while they show superhuman

performance. In this work, we empirically verify that questions that require semantic knowledge

are still challenging for masked neural language models to solve in question answering. Therefore,

we suggest a possible solution that injects semantic knowledge from external repositories into

masked neural language models.
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I Introduction

One of the long-standing goals in NLP is to teach machines to infer knowledge by understanding

language [2]. In NLP, QA is a task to find the correct answer for a given question. QA is

widely used as a benchmark to test a machine’s ability for natural language understanding and

reasoning [3].

Pre-trained language models have shown outstanding performances in various NLP tasks by

learning from a huge amount of data. MNLMs are defined as neural language models that are pre-

trained to restore the randomly masked words in a sequence of words. Recently, MNLMs, such

as BERT [4], ALBERT [5] and RoBERTa [6], have led to a breakthrough in various NLP tasks

including QA. However, it is difficult to identify what knowledge contributes to performance

improvement and what remains untrained because of the ‘black box’ nature of deep neural

networks with numerous and intermingled parameters.

Recently, there have been active efforts to analyze the inner working mechanisms of NLP

models. Recent approaches include behavioral tests, input attribution methods, data attribution

methods, probing embeddings, probing attention patterns, and fill-in-blank tests. Behavioral

tests diagnose model’s behaviors for different input examples of specific types of reasoning skills

required [7, 8]. Input attribution methods involve finding the most important parts of an input

example [9–11]. Similarly, data attribution methods try to find the most influential examples

for the prediction of an example [12, 13]. While attribution methods focus on finding the most

important part of inputs or data, probing methods [14–18] focus on exploring linguistic features

trained inside models based on embeddings for each layer, such as part-of-speech tagging, named

entity recognition, tense analysis, parsing and chunking. A common way for probing linguistic

features is to verify the existence of linguistic knowledge by training a simple neural network

for each linguistic feature of interest. There have been recent studies that probe attention

patterns without additional training on linguistic features [19, 20]. However, a recent study

argues that attention cannot be used as an explanation [21]. A fill-in-blank style test is a more

intuitive analysis method that explores relational knowledge learned in deep neural language

models. Specifically, [22] observes that BERT has learned relational knowledge, as competitive

as knowledge bases. However, [23] finds that BERT has learned shallow pattern matching rather

than the recall of learned factual knowledge.

Semantic knowledge is known to be an important factor for natural language understanding

and inference in QA tasks. As studied in [23], MNLMs rely on spurious statistical patterns

instead of understanding semantic knowledge while they show outstanding performance in var-

ious tasks. Specifically, they find that MNLMs do not often distinguish two opposite relations.

Extend this finding to QA tasks, we begin with two hypotheses:

1. Questions that require semantic knowledge are still difficult for MNLMs to solve while

they show outstanding performance in QA.
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2. MNLMs can be supplemented by integrating semantic knowledge from external knowledge

repositories.

To test our first hypothesis, we analyze the effect of lexical overlaps between a question and

a context on the difficulty of a question. If a question and a context have less lexical overlaps,

they would have more semantic variations. On the other hand, if a question and a context have

more lexical overlaps, they would have less semantic variations. Since less lexical overlaps do

not always guarantee more semantic variations, we also try with a different but more detailed

analysis method to categorize questions into six types based on required reasoning skills to solve

the questions. As a result, we find that questions that require semantic knowledge, specifically

commonsense knowledge, are still challenging for MNLMs to solve.

For our second hypothesis, we suggest a way to utilize semantic knowledge from external

knowledge sources into MNLMs. Specifically, we use ConceptNet [24] as an external knowledge

repository for our experiments. To incorporate external semantic knowledge, we propose an

automatic approach as well as a manual approach. The experimental results demonstrate that

incorrectly predicted questions can be correctly answered by MNLMs with the help of external

knowledge.

The main contributions in this thesis are as follows:

• Questions that require semantic knowledge, especially commonsense knowledge, are still

difficult for MNLMs to solve while they show outstanding performance in QA.

• We propose a way to dynamically integrate external semantic knowledge to supplement

MNLMs.
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II Background

2.1 Text Representation

Language Modeling

A language model is defined as a probability distribution over word sequences. Given a sequence

of m words w1, w2, . . . , wm, it assigns a probability P (w1, w2, . . . , wm). For example, a sequence

of words “Today is Monday” would have a higher probability than “Today Monday is”. [25] trains

a language model by predicting the next word of a sequence of words with a neural network.

A probability distribution of the next word x(t+1) given a sequence of words x(1), x(2), . . . , x(t)

is defined as P (x(t+1)|x(t), x(t−1)..., x(1)), where x(t+1) can be any word in the vocabulary V =

w1, w2, . . . , w|V |. For example, given a sequence of words “I want a cup of”, the next word

would be ‘water’ or ‘milk’, rather than ‘cake’ or ‘laptop’. Language modeling is one of the most

essential parts of NLP since it is used to learn text representations in various applications, such

as machine translation, question answering, sentiment analysis, and text summarization.

Word Embeddings

There have been various approaches [26–28] to learn a distributed representation for words from

large text corpora. Although they are widely used in various NLP applications, they suffer

from distinguishing multiple senses of a word (polysemy). Specifically, a word ‘bank’ in two

different contexts “open a bank account” and “on the river bank” has different senses. Since they

assign the same representation for a word ‘bank’ regardless of which sense of the word is used

in different contexts, they often fail to encode multiple senses in a single representation.

Contextualized Embeddings

Recent studies [4, 29] use context-dependent representations to solve the limitations of existing

word embeddings. Instead of using a single representation for each word, they use different

representations for different contexts in which the word appears. They show that using context-

dependent representations can significantly improve existing models in various NLP benchmarks.

2.2 Transformer

[1] proposes Transformer, a neural network architecture that is merely based on attention

mechanisms, to address the limitations of existing architectures based on RNN and CNN. RNN

has a computational burden especially for longer sequences of words because of its sequential

nature. There have been numerous efforts [30–32] to reduce the computational burden by using

CNN. However, both RNN and CNN suffer from learning dependencies between two distant

words. Attention mechanisms [33] are proposed to model dependencies regardless of a distance

between words. However, existing methods [34–36] use attention mechanisms in conjunction
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Figure 1: The overall architecture of Transformer. Reprinted from Vaswani et al. NIPS

2017:5998-6008 [1].

with RNN so the computational burdens still remain. On the other hand, Transformer is solely

based on attention mechanisms so the limitations of RNN and CNN are resolved. The overall

architecture of Transformer is shown in Figure 1. Each component of Transformer is described

below.

Input Embedding

The input sequence of words are mapped to the sequence of vectors, using learned embeddings.

Any embedding algorithms can be used here.

Positional Encoding

Since Transformer is solely based on attention mechanisms without RNN and CNN, positional

information is needed. Therefore, positional encodings are added to the input embeddings. The

positional encodings and input embeddings can simply be summed because they have the same

dimension. Sine and cosine functions are used in [1] while there are many choices of positional

encodings [30].
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Multi-head Attention

Multiple attention functions rather than a single attention function are used in each layer.

Specifically, word embeddings are linearly projected to h vectors with the size of d
h , where h is

the number of heads and d is the dimension of word embeddings. The outputs are concatenated

after performing attention functions. Multi-head attention allows the model to use information

from multiple representation subspaces.

Scaled Dot-product Attention

Scaled dot-product attention is used as an attention function in [1]. Query, key and value

weight matrices are trained to transform the input embeddings to query, key and value vectors.

To compute attention weights, the dot product of query and key vectors are scaled (divided

by dk) and a softmax function is applied. Then, the value vectors are multiplied by attention

weights to yield the outputs.

Feed Forward Networks

Followed by multi-head attentions, feed forward networks are applied in a position-wise manner

(the networks are identically applied regardless of positions). Feed forward networks consist of

two linear layers with a activation function in between.

Residual & Layer Normalization

Residual connections and layer normalization are applied after every attention and feed forward

block. The input and output vectors of each block are summed, and normalized in a layer-wise

manner.

Linear & Softmax

Linear layers and a softmax function are applied to convert the decoder output to predicted

next word probabilities.

2.3 Masked Neural Language Models

Recently, MNLMs have been used to solve various NLP tasks, showing superhuman perfor-

mances [4–6]. MNLMs can be fine-tuned to various tasks after pre-training with two objectives:

1) masked language model and 2) next sentence prediction. Different from traditional neural

language models [25] that are trained with next word prediction, MNLMs use a masked lan-

guage model objective, which restores the randomly masked tokens in a sequence of tokens.

They additionally use a next sentence prediction objective, which predicts whether a sentence

B is likely to appear after a sentence A. In the following, we briefly introduce MNLMs that are
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Table 1: Structures of MNLMs.

Models Number of Parameters Number of Layers Hidden Size Data Size

BERTbase 108M 12 768 16GB

BERTlarge 334M 24 1024 16GB

ALBERT1base 12M 12 768 16GB

ALBERT1large 18M 24 1024 16GB

ALBERT1xlarge 60M 24 2048 16GB

ALBERT2base 12M 12 768 160GB

ALBERT2large 18M 24 1024 160GB

ALBERT2xlarge 60M 24 2048 160GB

RoBERTabase 108M 12 768 160GB

RoBERTalarge 334M 24 1024 160GB

used in our experiments. Detailed information, such as the number of parameters and the size

of pre-training data, is described in Table 1.

BERT

BERT [4] is composed of the transformer encoder layers [1]. The model comprises a stack of

L transformer encoder layers. Each layer is composed of H self-attention heads and hidden

states of D dimensions. The input is represented as a pair of two text sequences A1, ..., AN and

B1, ..., BM , where each word token is mapped to its corresponding WordPiece embeddings [37].

Additionally, special token ‘[CLS]’ and ‘[SEP]’, or ‘classification token’ and ‘seperator token’ are

used for the final input representation:

[CLS], A1, ..., AN , [SEP ], B1, ..., BM , [SEP ]

BERT is pre-trained with about 16GB of text corpora, which is composed of English Wikipedia

and Book Corpus [38].

RoBERTa

RoBERTa, which is a variant of BERT, has the same structure with BERT. However, there

are several changes to improve the BERT. First, RoBERTa dynamically masks tokens during

training while BERT has fixed masked tokens. Second, RoBERTa is trained with a single

sequence of tokens instead of using a next sentence prediction objective. Next, RoBERTa uses a

byte pair encoding [39] algorithm instead of the WordPiece for tokenization. Lastly, RoBERTa

is pre-trained with much larger data. Especially, the data is about 160GB, which is composed

of CommonCrawl News dataset [40], Open WebText corpus [41], and STORIES corpus [42] in

addition to the pre-training data of BERT.
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ALBERT

ALBERT is another variant of BERT, using the same structure with several differences. First,

ALBERT uses a decreased number of word embedding dimensions and shares parameters to

reduce the complexity. Additionally, ALBERT is pre-trained to predict sentence order instead

of the next sentence prediction objective. ALBERT has two versions with varying data sizes.

ALBERT1 uses 16GB of data, which is the same as BERT, while ALBERT2 uses 160GB of

data, which is the same as RoBERTa.

Semantic Knowledge of MNLMs

Semantic knowledge is key to natural language understanding [2]. There have been several

studies that investigate whether MNLMs can recall the semantic knowledge that is part of

their training data. Specifically, [22] introduces language model analysis, which is a way to

test MNLMs by querying semantic knowledge with a masked word. For example, ‘birds can

fly’ can be converted into ‘birds can ’ to test if the model can recall the fact that birds

can fly. [22] shows that MNLMs perform better than automatically extracted knowledge bases

in language model analysis. However, [23] reveals that MNLMs do not precisely understand

semantic knowledge. Especially, they do not even know the meaning of negation, which can

be easily captured by humans, in many cases. Therefore, we hypothesize that questions that

require semantic knowledge would be still difficult for MNLMs to solve despite their outstanding

performance in QA tasks.

2.4 Question Answering

QA is one of widely used benchmarks to test ability of machines to understand natural language.

There are several different types of QA tasks but we focus on a specific type of QA task called

extractive QA. The task is to extract the answer from the context, given a question and an

associated context, where the answer appears as it is in the context.

For experiments, we use SQuAD 2.0 dataset. The dataset consists of has answer and no

answer questions. A has answer question can be answered directly or indirectly after reading

the context. On the other hand, a no answer question cannot be answered even after reading

the context.

2.5 ConceptNet

Since the scope of semantic knowledge is too broad, we focus on knowledge from a specific

semantic knowledge graph, called ConceptNet [24]. ConceptNet is a semantic knowledge graph

extracted from open mind commonsense dataset [43], designed to help machines understand

semantic knowledge shared by humans. It has been widely utilized as a knowledge repository in

existing studies [44–46]. In ConceptNet, semantic knowledge is represented as a graph, where

each node represents a word or an entity, each edge represents a relation between two entities.

7



We can also think of it as a set of triples, composed of subject, relation, and object (e.g. ‘birds’,

‘CapableOf’, ‘fly’). For experiments, we use a 5.6.0 version of ConceptNet.
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III Do MNLMs Understand Semantic Knowledge in QA?

Table 2: Examples of easy and hard questions on the has answer questions.

Similarity* Question Answer Context

> 0.6

In what year did

Savery patent his

steam pump?

1698

... In 1698 Thomas Savery patented

a steam pump that used steam in

direct contact with the water being

pumped. ...

< 0.1

Which country was

the last to receive

the disease?

northwestern

Russia

From Italy, the disease spread

northwest across Europe, ... Finally

it spread to northwestern Russia in

1351. ...
* Cosine similarity between TF-IDF term weighted uni-gram vectors of the question and the context

Although MNLMs have shown outstanding performance in various tasks, they have incom-

plete semantic knowledge [23]. Extending this to QA, we try to find whether the models under-

stand semantic knowledge or not. We assume that a similarity between question and context

is related to the amount of required semantic knowledge. For example, if a question and a

context are similar, or have many overlapping words, they are less likely to require semantic

knowledge. On the other hand, if a question and context are not similar, they are more likely

to require semantic knowledge. The examples of questions with different similarity scores are

shown in Table 2. We observe that the first question is similar to context, therefore the clues are

explicitly shown in the context. On the other hand, the second question is not similar with the

context, thus requires additional clues that are not explicitly provided. For example, to solve

the question, we have to infer that Russia is a country, as well as that ‘spread the disease’ can be

paraphrased into ‘receive the disease’. Therefore, questions with low similarity are more likely to

require implicit clues, such as semantic knowledge, affecting the difficulty of the questions. In the

following, we analyze a correlation between similarity and difficulty of the question. In addition,

we try with a different but more detailed analysis method, which is to manually categorize the

questions into six types according to the reasoning skills required to solve the questions. Then,

we analyze what types of questions are difficult to solve so that we can test whether semantic

knowledge required questions are challenging or not. For analysis, we use largest models of each

type of MNLMs trained on the SQuAD 2.0 [47], a QA dataset: BERTlarge, ALBERT1xlarge,

ALBERT2xlarge and RoBERTalarge. The analyses are conducted with the development set since

we cannot access the test set. The detailed information is explained in the following.
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Figure 2: Results on the correlation between similarity and difficulty of questions.

3.1 Correlation between Similarity and Difficulty of Questions

In this section, we analyze how similarity affects difficulty of questions. Here, similarity means

similarity between a question and a context. Specifically, we use a cosine similarity between

a question and a context, represented as uni-gram bag-of-words vectors normalized by term

frequency and inverse document frequency [48]. As a measure of difficulty, we use performance

of the MNLM-based QA models. Specifically, we use an exact match score and an accuracy for

has answer and no answer questions, respectively. The results are shown in Figure 2, where (a)

shows results of the has answer questions and (b) shows results of the no answer questions. X-

axis denotes the cosine similarity of a context and a question. Y-axis indicates the performance of

the models: an exact match score and an accuracy, respectively. The questions whose similarity

score is higher than 0.6 are ignored since there are only a few (less than 1%). The error bars

in the graphs are standard deviations. We see that has answer questions become more difficult

as their similarity is higher while no answer questions have the opposite tendency. Especially,

among has answer questions, the performance drops sharply when the similarity becomes lower

than 0.2. The questions whose similarity is below 0.2 account for only 20% of all of the has

ans questions. We suspect that the high performance of MNLMs is due to the large portion of

relatively easy questions.

3.2 Categorizing Questions based on Reasoning Types

Here, we test if questions that require semantic knowledge are difficult to MNLMs in QA by

classifying the questions based on reasoning types. We focus on has answer questions whose

similarity is below 0.2 because we are interested in which types of questions are difficult. We

categorize the questions into the six types based on reasoning types in SQuAD [49], as shown

in Table 3. Then, we analyze the correlation between these types and the performance of the

models. We analyze the proportions of questions in each type comparing questions that are

correctly predicted by the models and incorrectly predicted questions. The analysis results are

shown in Table 4. We observe differences in the proportion of the questions in each type between

the correctly and incorrectly predicted questions. Among the correctly predicted questions, no

semantic variation questions account for more than 50% across the models. This implies that

the questions that do not require semantic knowledge are relatively easy to solve. Among the
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Table 3: Examples and descriptions for each type of the has answer questions in SQuAD 2.0.

Question Types Description Example

Synonymy

There is a clear correspon-

dence between question and

context.

Question: Which entity is the sec-

ondary legislative body?
Context: ... The second main leg-

islative body is the Council, which is

composed of different ministers of the

member states. ...

Commonsense
knowledge

Commonsense knowledge is

required to solve the ques-

tion.

Question: Where is the Asian influ-

ence strongest in Victoria?
Context: ... Many Chinese miners

worked in Victoria, and their legacy is

particularly strong in Bendigo and its

environs. ...

No semantic variation

There is no semantic vari-

ation such as synonymy or

commonsense knowledge.

Question: Who are the un-elected

subordinates of member state gov-

ernments?
Context: ... This means Commission-

ers are, through the appointment pro-

cess, the unelected subordinates of

member state governments. ...

Multi-sentence reasoning

Hints for solving questions

are shattered in multiple sen-

tences.

Question: Why did France choose to

give up continental lands?
Context: ... France chose to cede the

former, ... They viewed the economic

value of the Caribbean islands’ sugar

cane ...

Typo
There exist typing errors in

the question or context.

Question: What kind of measure-

ments define accelerlations?
Context... Accelerations can be de-

fined through kinematic measurements.

...

Others
The labeled answer is incor-

rect.

Question: Who won the battle of

Lake George?
Context: ... The battle ended in-

conclusively, with both sides with-

drawing from the field. ...

11



Table 4: The analysis results of question type categorization.

Model Status*

Question type

Semantic variation Multiple

sentence

reasoning

No

semantic

variation

Typo Others
Synonymy

Commonsense

Knowledge

BERTlarge Correct 27.29 22.54 11.82 54.14 1.22 1.10

BERTlarge Incorrect 30.71 49.46 19.84 27.45 1.63 2.99

ALBERT1xlarge Correct 28.06 24.40 12.46 51.52 1.15 1.15

ALBERT1xlarge Incorrect 28.93 48.11 19.18 31.13 1.89 3.14

ALBERT2xlarge Correct 28.22 24.41 12.56 51.80 1.13 0.93

ALBERT2xlarge Incorrect 28.48 49.34 19.21 29.14 1.99 3.97

RoBERTalarge Correct 28.81 25.12 12.36 50.55 1.30 1.10

RoBERTalarge Incorrect 26.30 49.63 20.74 31.11 1.48 3.70

Overall† Correct 27.29 17.86 10.97 57.81 1.27 0.84

Overall Incorrect 25.69 55.96 22.02 24.77 1.83 4.59

Total proportion 28.28 30.32 14.14 46.43 1.34 1.65

The categories can be tagged with duplicates except for semantic variation and no semantic variation.
* Correct: Questions correctly predicted by the model, Incorrect: Questions incorrectly predicted by the model
† Questions succeed or failed to predict by all experimental models commonly

incorrectly predicted questions, commonsense knowledge questions account for about 50% across

the models. Therefore, the questions that require commonsense knowledge, which is a kind of

semantic knowledge, are still the most difficult for the models to solve.

12



IV Integrating Semantic Knowledge from External Knowledge

Repositories

Table 5: Examples of manual external commonsense knowledge integration.

Required Knowledge* Question Context

uv Synonym ultraviolet

radiation

_____ Helps the biospher

from UV, which is the

same as ultraviolet radi-

ation.

... the high-altitude ozone

layer helps protect the bio-

sphere from ultraviolet radi-

ation, ...

rare Antonym frequent
How frequent is snow in the

Southwest of the state?

... But snow is very rare,

which is the opposite of fre-

quent, in the Southwest of the

state, ...

punishment RelatedTo

sentence

Why would one want to give

more punishment, which

is related to sentence?

... the judge increased her sen-

tence from 40 to 60 days. ...

* The blue words indicate the subject term of the triple

The red words indicate the relation or the relation’s relative pronoun template of the triple

The turquoise words indicate the object term of the triple

We found that MNLMs have limitations in solving questions that require commonsense

knowledge. Therefore, we suggest a possible solution that injects semantic knowledge, especially

commonsense knowledge, from external repositories into the models. First, we suggest a manual

knowledge integration method, where a human manually integrates external knowledge into the

models. However, it is not always possible for humans to manually incorporate knowledge.

Therefore, we suggest an automatic approach as well. For experiments, we use ConceptNet [24]

as an external knowledge source. The experiments on knowledge integration are described in

the following.

4.1 Manual Knowledge Integration

We first manually integrate external knowledge. Specifically, we inject knowledge by augmenting

the text of a question or a context without additional training or changing the model structure.

We illustrate how the required knowledge is incorporated into the text in Table 5. First, we find

a subject word of a required knowledge triple in the question and context. Then, we augment

the word with the relation and object of the triple. Here, the relation is converted into a natural

language form using the templates. The templates used in the experiments are shown in Table 6.

We test our manual knowledge integration method on questions in SQuAD 2.0 that are
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Table 6: The templates for 37 relations in ConceptNet.

Relation Template

RelatedTo [[SUBJ]] is related to [[OBJ]] .
HasContext [[SUBJ]] is used in the context of [[OBJ]] .

IsA [[SUBJ]] is a [[OBJ]] .
DerivedFrom [[SUBJ]] is derived from [[OBJ]] .
Synonym [[SUBJ]] is the same as [[OBJ]] .
FormOf [[SUBJ]] is the form of [[OBJ]] .
SimilarTo [[SUBJ]] is similar to [[OBJ]] .

EtymologicallyRelatedTo [[SUBJ]] is etymologically related to [[OBJ]] .
AtLocation [[SUBJ]] can be found at [[OBJ]] .
MannerOf [[SUBJ]] is a way to [[OBJ]] .
Antonym [[SUBJ]] is the opposite of [[OBJ]] .

HasProperty [[SUBJ]] can be [[OBJ]] .
PartOf [[SUBJ]] is part of [[OBJ]] .
UsedFor [[SUBJ]] may be used for [[OBJ]] .

DistinctFrom [[SUBJ]] is not [[OBJ]] .
HasPrerequisite [[SUBJ]] requires [[OBJ]] .
HasSubevent [[SUBJ]] has subevent, [[OBJ]] .

Causes [[SUBJ]] causes [[OBJ]] .
HasA [[SUBJ]] contains [[OBJ]] .

InstanceOf [[SUBJ]] is an instance of [[OBJ]] .
CapableOf [[SUBJ]] can [[OBJ]] .

ReceivesAction [[SUBJ]] can be [[OBJ]] .
MotivatedByGoal [[SUBJ]] can be motivated by [[OBJ]] .

CausesDesire [[SUBJ]] would make you want to [[OBJ]] .
MadeOf [[SUBJ]] can be made of [[OBJ]] .

HasLastSubevent [[SUBJ]] has the last subevent [[OBJ]] .
Entails [[SUBJ]] entails [[OBJ]] .

HasFirstSubevent [[SUBJ]] has the first subevent [[OBJ]] .
Desires [[SUBJ]] wants [[OBJ]] .

NotHasProperty [[SUBJ]] can not be [[OBJ]] .
CreatedBy [[SUBJ]] is created by [[OBJ]] .
NotDesires [[SUBJ]] does not want [[OBJ]] .
DefinedAs [[SUBJ]] can be defined as [[OBJ]] .

NotCapableOf [[SUBJ]] can not [[OBJ]] .
LocatedNear [[SUBJ]] is typically near [[OBJ]] .

EtymologicallyDerivedFrom [[SUBJ]] is etymologically derived from [[OBJ]] .
SymbolOf [[SUBJ]] is an symbol of [[OBJ]] .
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Table 7: Experimental results of the manual knowledge integration test.

Model
Number of

examples

Original text Knowledge integrated text

EM* F1† EM F1

BERTlarge 78 0.00 28.08 8.97 35.22

ALBERT2xlarge 69 0.00 31.86 13.04 44.81

RoBERTalarge 64 0.00 32.94 14.06 41.49
* F1 score
† Exact match score

incorrectly predicted by each model, where the exact match score is zero. Note that we focus on

has ans questions whose similarity score is below 0.2. Additionally, we find that 244 questions

out of 684 semantic variation type questions have clues in ConceptNet. Then, we use incorrectly

predicted questions among 244 questions. Then, we test our method in exact match score and

F1 score. F1 score is a harmonic mean of recall and precision, as shown below.

Precision =
#ofwords in predicted answermatchedwithwords in the ground truth

#ofwords in predicted answer
(1)

Recall =
#ofwords in predicted answermatchedwithwords in the ground truth

#ofwords in the ground truth
(2)

F1 =
2× Precision× Recall
Precision+ Recall

(3)

The results of manual knowledge integration method are shown in Table 7. Here, we did not

test ALBERT1 due to the engineering issues. We see that some of them are correctly predicted

across the models after applying our method. This implies that using external knowledge can

be a possible direction for overcoming the limitations of existing MNLMs in inferring semantic

knowledge, especially commonsense knowledge.

4.2 Automatic Knowledge Integration

Since it is not efficient for humans to identify and integrate required knowledge, we suggest an

automatic integration method as well. The overall architecture of the automatic integration

model is shown in Figure 3. First, the input text is encoded using MNLMs into the contextu-

alized text representations. At the same time, the input text is passed to external knowledge

repositories, such as ConceptNet, to extract candidate knowledge triples. Specifically, we ex-

tract candidate triples if either a subject or an object of a triple appears in the input text.

After extracting candidate triples, we convert them into vectors using the word embeddings of

MNLMs. Since each triple is represented as multiple vectors, we use attention pooling so that

each triple can be represented as a single vector. Then, we align commonsense knowledge into
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Figure 3: The overall architecture of the automatic knowledge integration model.

Table 8: Experimental results of the automatic knowledge

integration test on all of the has ans questions.

Model
F1

Baseline Knowledge integrated model

BERTbase 78.39 80.93

BERTlarge 82.86 83.70

ALBERT2base 80.30 80.60

ALBERT2large 84.18 84.42

ALBERT2xlarge 86.78 87.20

RoBERTabase 80.89 81.85

RoBERTalarge 88.07 88.36

the input text using the attention mechanism [33]. This can be thought as learning to selectively

utilize knowledge among candidate knowledge triples. Here, a sentinel vector is used to indicate

the cases where none of the candidates are necessary to solve the question. The commonsense

aligned text representation is passed to a bi-directional layer and a self-attention layer, respec-

tively. Finally, a softmax function is applied to find the start and end positions of the answer.

We first tested our automatic knowledge integration method on all of the has ans questions in

the SQuAD 2.0 dataset. The experimental results are shown in Table 8. We observe that the

performance has improved consistently across the models. In addition, as shown in Table 9, we

tested on commonsense required questions among the has ans questions that we labeled to see

if our method really helps the models infer commonsense knowledge. Specifically, we test on the

386 commonsense required questions. The results show the consistent performance improvement
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Table 9: Experimental results of the automatic knowledge

integration test on commonsense required questions among

the has ans questions.

Model
F1

Baseline Knowledge integrated model

BERTbase 52.47 57.68

BERTlarge 61.23 61.28

ALBERT2base 57.72 58.26

ALBERT2large 62.59 63.44

ALBERT2xlarge 69.46 74.01

RoBERTabase 55.45 58.73

RoBERTalarge 73.50 70.62

across the models, except for RoBERTalarge, verifying that utilizing commonsense knowledge

from external knowledge sources can help MNLMs infer commonsense knowledge.
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V Conclusion

In this thesis, we empirically verified that questions that require semantic knowledge, especially

commonsense knowledge, are still difficult for MNLMs while they show outstanding performance

in various NLP tasks. Moreover, we suggested a possible solution to integrate semantic knowl-

edge from external sources into the models. Our experimental results show that MNLMs can

be complemented by injecting external commonsense knowledge. The analysis on the behavior

of knowledge integration models remains as future work.
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