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GAN Correction
Goal: Correction of artifact generations without re-
training the generator.
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Motivations:
• Existing Generative Adversarial Networks (GANs)

generate low visual fidelity images known as arti-
facts.
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Key Contributions:
• Identifying internal defective units in GANs.
• An artifact removal method by globally ablating de-

fective units.
• Generalization for various structure of generator.

Artifact Unit Identification
FID-Based Artifact Unit Identification:
• In existing research [1], artifact units are identified

based on Fr´echet Inception Distance (FID).
• However, the FID-based identification misjudge

some units.
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Classifier-Based Artifact Unit Identification:
• Train a classifier with hand-labeled generations.
• Apply GradCAM [2] to obtain artifact mask.
• Define defective score (DS) based on Intersection

of Unions between internal featuremaps and Grad-
CAM mask.

Generations GradCAM Generations GradCAM

L
S

U
N

-C
h

u
rc

h

C
e
le

b
A

-H
Q

Generations GradCAM Generations GradCAM

Trade-off in Single Layer Ablation:
• Although increasing the number of ablation units

can correct the artifact region, it may degrade the
quality at the same time.
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Experiments & Results
Analysis for hyper parameters:
• FID and Realism score [3] for various hyper parame-

ters.

Quantitative Results:
• FID scores of corrected artifact generations for PG-

GAN with various dataset.

Correction LSUN-Church LSUN-Bedroom CelebA-HQ

Random 53.43 42.10 67.46

FID 40.66 44.37 48.48

DS 32.82 34.71 44.93

Seq. Corr 23.96 34.71 40.71

Qualitative Results:
Original FID-based DS-based Seq. Corr Original FID-based DS-based Seq. Corr

Generalization:
• The proposed method with minor modification can

be generalized for the various structure of generator.
• In StyleGAN v2 and U-net GAN which is a variant

of BigGAN, the correction performance is validated.
Original Seq. Corr Original Seq. Corr
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Discussion:
• Sequential correction method that requires no addi-

tional retraining.
• Plausible correction performance and generalization

for various recent generator models.
• Illustrated below are some failure cases which the

original structure was changed after correction.
Original Seq. Corr Original Seq. Corr Original Seq. Corr
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Automatic Correction of Internal Units
Identification of the artifact units for each layer (top) and the generation flow for two correction method (bottom).

Artifact Unit Identification

Single-layer Correction
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GAP: Global Average Pooling

■ Generation Flow
■ Stopped Flow


