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A Scalable and Flexible Repository for
Big Sensor Data
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Abstract—Data generation rates from sensors are rapidly in-
creasing, reaching a limit such that storage expansion cannot keep
up with the data growth. We propose a new big data archiving
scheme with an optimized lossy coding to handle huge volume
of sensor data. Our scheme leverages spatial and temporal
correlations inherent in typical sensor data. These correlations,
along with quality adjustable nature of sensor data, enable us to
compress a massive amount of sensor data without compromising
their distinctive attributes. A data aging aspect of sensor data
also offers an option to apply scalable quality management while
stored. In order to maximize the benefits of storage efficiency,
we derive an optimal storage configuration for the data aging
scenario. Experiments show outstanding compression ratios of
our scheme and the optimality of storage configuration that
minimizes system-wide distortion of sensor data under a given
storage space.

Index Terms—Quality-adjustable sensor data, storage man-
agement, big data archiving, data compression, distributed file
systems, wireless sensor networks.

I. INTRODUCTION

DATA generation rates from sensors have increased dra-
matically, fostering the widespread research of big sen-

sor data [1], [2]. As various types of sensors are being
deployed, information generated by these sensors are also
rapidly increasing [3], [4]. This massive data flow generated
by sensor devices now comprises a notable portion of big data
and intensifies depending on applications such as large-scale
scientific experiments [5]–[7].

While data storage capacities keep increasing with reduced
cost, this faster data generation rate now leads to a paradox
that increasing storage capacity cannot catch up with the rate
of information explosion. It is reported that almost half of
information created and transmitted cannot be stored now
and this mismatch between available storage and information
creation will become more serious [7], [8].

From the perspective of an information repository, this
mismatch necessitates the development of a new big data
archiving technique that facilitates scalable and flexible usage
of the repository. We now propose a quality-adjustable archiv-
ing scheme for massive sensor data. Our scheme thoroughly
exploits both spatial and temporal correlations inherent in
sensor data collections, and generates a digested set of sensor
data keeping fidelity under control, which is demonstrated as
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outstanding compression efficiency with data fidelity corre-
sponding to orders of sensor accuracies. In addition, a concept
of data aging is embodied in the quality-adjustable feature of
our scheme with multiple fidelity levels: older sensor data are
not as representative as recent data and can be represented
with less precision [9].

To our best knowledge, there have been no in-depth studies
on efficient data archiving techniques that fully exploit spatio-
temporal correlation of huge sensor data set. In distributed
environments such as wireless sensor networks (WSNs), a
few approaches have utilized partial correlation to reduce
traffic and storage usage inside the networks themselves [1],
[2], [10]–[15]. Although these approaches have achieved their
objectives in distributed environments, efficient archiving tech-
niques are still necessary if sensor data are eventually to be
stored in central storage.

A massive amount of data from various sensors should be
archived in a cost-effective manner such that the system-wide
distortion is minimized under a given storage space. In order to
solve this issue, we propose new analytical models that closely
reflect characteristics of our archiving scheme and eventually
an optimal storage configuration problem. Since this optimiza-
tion problem is convex, we can analytically solve it and obtain
optimal parameters. Experimental results demonstrate that our
optimal storage configuration effectively minimizes system-
wide distortion under a given storage space. The system-
wide distortion can otherwise increase drastically, which is
translated into inefficient expenditure of storage space.

The rest of this paper is organized as follows. Section 2
explains key characteristics of sensor data and how they can
be exploited for storage efficiency using our scheme. Section 3
overviews how our archiving scheme works. In Section 4, we
derive analytical models that explain the relationship between
controllable quality parameters and rate-distortion, which leads
to the rate allocation and storage configuration problems in
Section 5. Section 6 exhibits its performance compared to
various schemes and also illustrates the importance of the
optimal storage configuration. Section 7 reviews related works,
followed by concluding remarks in Section 8.

II. MOTIVATION

Our quality-adjustable archiving scheme benefits from the
use of lossy coding that exploits three key characteristics of
sensor data. The entire storage space can be efficiently utilized
through the judicious use of the lossy coding over numerous
sensor data blocks with different types.
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A. Three Key Characteristics of Sensor Data

In many applications, individual sensor data may not require
either bit-level accuracy or intactness due to several reasons: (i)
each sensor node is equipped with inexpensive and imprecise
sensors that only guarantee moderate level of sensing accuracy,
(ii) sensor nodes are densely deployed and they periodically
capture data that are highly correlated in spatio-temporal
domain, which makes storing all of data unnecessary, (iii) we
are usually interested in overall trend of sensor data, thus we
can tolerate a certain amount of distortion and approximate
results are sufficient most of the time [16]–[18]. This property
is called the quality adjustability in this paper.

Data aging, where data fidelity is gradually decreased, is
common practice when handling various kinds of time series
data [9], [19]–[21]. Sensor data fidelity can also be gradually
decreased as time goes by. Since fresh data are important
(e.g., frequently accessed) and should retain high fidelity, aged
data could be regarded less important and only find their use
in offering a digest of historical trend in sensor readings.
Therefore it is sufficient to store key features of sensor data in
most sensor applications especially for long-term storage [10],
[11], [22].

Because sensors usually capture physical phenomenon such
as environmental data, their data are highly correlated in
nature within spatial and temporal domain [22]: spatially and
temporally close data samples are more correlated than distant
counterparts. (Here the degree of correlation is measured by
autocorrelation function: one-dimensional in temporal domain
and two-dimensional in spatial domain [23].) In particular,
the temporal correlation tends to be stronger than the spatial
correlation since the sensing frequency of a particular sensor
node is in general high enough to surpass the spatial closeness
among deployed sensor nodes. This spatio-temporal correla-
tion, along with the quality adjustability, allows sensor data to
be represented in a compact form.

B. Combating Shortage of Storage Space

The quality adjustability of sensor data and its trade-off
between data fidelity and compression ratio provides us with
many options of encoding. Among these numerous operating
points, we have to select the best possible way of encoding
data that yields the maximum fidelity (the minimum distor-
tion) under a given storage space, i.e., the optimal storage
configuration.

In other words, we want to solve an optimization problem
that requires analytical models, which are unknown. In gen-
eral, we are not exactly aware of the compressed data size and
fidelity prior to an actual encoding that vary depending on a
data set. For this reason, we build new analytical models in
Section IV. Our models are close enough to reflect operating
points of our archiving scheme, which can be adapted to
multiple sensor data types using different model parameters.

Given analytical models, their model parameters are deter-
mined when an enough number of data samples for each type
of sensor data is gathered. We assume a stationarity of data for
each type without loss of generality, which can be applicable
to most sensor data. (For instance, the dynamic range of
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Fig. 1. Flowchart for optimal storage configuration. Each sensor data type
has its own model parameter set.

temperature data does not change over time.) Therefore, we
need to determine model parameters only once for each sensor
data type in the model training process shown in Fig. 1.

Using these model parameters, we can perform a convex
optimization that yields the minimum system-wide distortion
with a given storage space, whose solution is presented in
Section V. (Our analytical models are convex by virtue of the
trade-off relationship between data fidelity and compression
ratio. The sum of these convex functions is also convex.) The
solution of the convex optimization provides optimal input
parameters, with which the archiving process shown in Fig. 1
is executed. This way, the entire storage space is efficiently
utilized.

III. OVERVIEW OF OUR ARCHIVING SCHEME

A. Quality Management Module: Lossy Coding

The characteristics of sensor data described in Section II-A
allow us to compress the entire data set into a smaller form
with a reasonable loss in fidelity. Fig. 2 illustrates the block
diagram of our quality management module, which is designed
to work with conventional distributed file system.

Massive data from various sensors are first collected and
filtered through the spatio-temporal decorrelation module.
Specifically, a sensor value can be predicted by similar values
captured by other sensors in close proximity (spatial corre-
lation), or by previous and next similar values captured by
that sensor (temporal correlation),1 whichever is stronger than
the other, depending on each data instance. If we take a
differential between target and predicted values, we ideally
obtain a decorrelated value that is close to zero, which means
the redundancy in input data is removed.

In reality, these differentiated sensor values still have a fair
amount of correlation inside. Therefore the resulting output in
turn undergoes the two-dimensional discrete cosine transform
(DCT) for further signal decorrelation and energy compaction.
The DCT is an approximation of Karhunen-Loève transform

1Predicting a sensor value using similar values in temporal proximity is
shown in Fig. 4.
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Fig. 2. Quality management module working with conventional distributed
file system. Black arrows represent data and control flows of file system.
Lossy coding runs on storage servers under control of metadata servers.

that is optimal in reducing the dimensionality of feature
space [24].

After the two-dimensional DCT, transformed data are sub-
ject to the quantization process that sacrifices precision of
data in order to represent them in a compact form, which
irrevocably maps a large set of values onto a smaller set.
The quantization module controls sensor data fidelity, which
can be adjusted through a quantization parameter (QP). The
QP determines how much we compress data at the cost of
decreased data fidelity. Finally, the entropy encode module
compactly produces an encoded data block [23].

It should be noted that this lossy coding part of our
scheme is analogous to modern image and video encoding
schemes. Specifically, video encoding schemes typically in-
volve computation-intensive operations such as the motion
estimation and compensation (ME/MC) [23]. On the contrary,
the spatio-temporal decorrelation module shown in Fig. 2 does
not involve ME/MC. Rather, previous and next collections of
sensor values in the collocated positions are always used for
the temporal decorrelation, avoiding complex motion search.
Video data and sensor data share similarities in the sense
that they both have the spatio-temporal correlation inside.
However, sensor data generally do not have the motion of data
clusters between consecutive collections of sensor values.

Since storage servers are usually not involved in
computation-intensive tasks, they can run the quality manage-
ment module in online or offline, depending on applications.
In fact, the entire chain of processes in Fig. 2 can be further
optimized to speed up if we employ single instruction, multiple
data (SIMD) instructions that most modern CPUs support
[25]–[27].2

B. Quality Management Module: Temporal Quality Adjust-
ment

In our scheme, multiple temporal levels are supported with
a fixed QP. These multiple temporal levels can be utilized
as supplementary layers that are gradually discarded as time
elapses to incorporate data aging concept.

Fig. 3 illustrates how incoming sensor data input is handled
and archived with our scalable archiving scheme. The quality

2The performance optimization of our scheme is beyond the scope of this
paper.
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Fig. 3. Sensor data flow with our quailty-adjustable archiving scheme. Quality
management module adjusts temporal quality through the course of sensor
data aging. Number of clusters can vary depending on applications.

management module first compresses raw sensor data block
with a selected QP, which is then stored on the highest fidelity
cluster, i.e., the cluster 4 in Fig. 3. When a certain amount of
time passes, the quality management module discards the top
layer and shift the data block to the next cluster. This process
continues until the data block finally reaches the cluster 0,
where the data block is archived for a long time.

C. Storage Space Optimization

In Section II-B, we described the efficient usage of storage
space by determining optimal input parameters to the lossy
coding part of our archiving scheme presented in Section III-A.
At any given time, the system has numerous sensor data blocks
with different types, each of them belonging to one of clusters
according to Fig. 3. In this case, the optimization problem
would be stated as “minimize system-wide distortion with total
rate budget (given storage space),” which is formulated in (15),
Section V.

Our solution to this optimization problem is presented as a
relationship equation shown in (17). Once model parameters
are determined for each sensor data type in the model training
process of Fig. 1, the solution (17) can be easily calculated
in the archiving process of Fig. 1, yielding the optimal
input parameters to lossy coder. These input parameters for
each sensor data type can be steadily used, or occasionally
recalculated depending on the availability of storage space.

IV. QUALITY-ADJUSTABLE ARCHIVING

We now focus on the quality-adjustability of our archiving
scheme. We derive analytical models that reflect the effect
of adjusting data fidelity on both rate and distortion aspects.
Since our quality management module shown in Fig. 2 is
analogous to general video coding schemes, we partially adopt
modeling approaches practiced in video coding literature on
the one hand [28], [29]. On the other hand, we adopt another
tack since these approaches are limited to model every aspect
of our scheme; they are designed to model video data. We
show our models are close to actual results, while general
models in video coding fail to follow actual results. Our
models subsequently enable us to develop the optimal storage
configuration strategy in the next section.

A. Data Fidelity Model: Rate

While the size of data can be controlled by adjusting QP at
the quantization process in Fig. 2, it can also be controlled
by adjusting the granularity in temporal domain, which is
equivalent to the temporal quality adjustment. Fig. 4 shows the
temporal coding structure of our spatio-temporal decorrelation
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Fig. 4. Temporal coding and prediction structure of our spatio-temporal
decorrelation module. Each increasing temporal level coincides with including
collections of sensor data labeled the corresponding level, i.e., Ti.

module. There are total five temporal levels shown in Fig. 4,
where each increasing temporal level corresponds to a double
of frequency at which collections of sensor data at certain
time instance are included in coded data set. Here, the range
of temporal levels can be extended or reduced depending on
applications, which entails modification of the temporal coding
and prediction structure. (Without loss of generality, we use
the structure shown in Fig. 4 throughout the paper.)

As an example, the temporal level 3 will include collections
of sensor data labeled T0, T1, T2, and T3 in Fig. 4. And the
highest temporal level 4 shall contain all of data sampled in
line with temporal dimension.

Fig. 4 also displays the temporal prediction structure shown
by arrows, which exploits strong temporal correlation. Since
the prediction of a certain level only involves the lower
temporal level collections, adjusting temporal granularity is
made possible.

It is quite intuitive to reckon that the size of compressed data
block R is reduced by half as the temporal level decreases
by one step. (In general, the rate R denotes the number of
bits per symbol [30]. We extend its notion to represent a data
block size which is a basic unit in our study.) However, due to
the temporal prediction structure shown in Fig. 4, the amount
of reduction becomes less than half per one temporal level
decrease. We can model this relation as

R = α(∆) · exp(β(∆) · T ), (1)

where α(∆) and β(∆) are model parameters dependent on
the quantization step size ∆, and T ∈ {0, 1, 2, 3, 4} denotes
the temporal level.

In (1), two model parameters α(∆) and β(∆) have to be
estimated from real data based on the quantization step size.
Since the quantization step size is directly related to a degree to
which a data block is compressed, R is inversely proportional
to ∆, which should be reflected on the model parameters given
by

α(∆) = aα exp(bα∆) + cα exp(dα∆), (2)
β(∆) = aβ exp(bβ∆) + cβ , (3)

where aα, bα, cα, and dα are data-dependent constants sup-
plementary to α(∆) in (1), and similarly, aβ , bβ , and cβ are
constants for β(∆) in (1). It should be noted that in (2) a
mixture of two exponential functions is used to model long-
tail shape of α(∆) in (1).
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Combining (2) and (3) with (1), we can represent the
total rate as a function of both the quantization step and
the temporal level. The resulting model function is plotted
in Fig. 5, where five lines represent each temporal level and
actual data points are also plotted for comparison. We can
confirm the model effectively follows the varying size of actual
sensor data.

In Fig. 5, (1) in terms of T is explained along the vertical
axis. Fig. 6 shows two model parameters in (1) and their model
estimations by (2) and (3).

B. Data Fidelity Model: Distortion

In addition to the rate modeling discussed above, we can
estimate the distortion of data due to the quantization as well.
Here we represent the distortion in terms of mean squared
error (MSE) measure. As more quantization is applied at
the quantization process, data fidelity is more decreased, i.e.,
increased distortion, which is reflected by

Dquant = aquant · exp(bquant ·QP ) + cquant, (4)

where aquant, bquant, and cquant are data-dependent constants.
It should be noted that (4) is a function of QP , whose
relationship with the quantization step size ∆ is expressed
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Fig. 7. Distortion curve as a function of QP estimated by (4).

by ∆ = 0.625 · 2QP/6 [29].3 Fig. 7 shows actual distortion
points and their approximation using (4).

Although (4) effectively models the distortion caused by
quantization, the source of distortion is not limited to the
quantization. As the temporal level T varies, the amount
of sampled data along temporal dimension varies as well,
which causes another distortion. Recalling the temporal coding
structure shown in Fig. 4, as T decreases by one step, half of
data are excluded from data set. This leads to the condition that
omitted data should be estimated using previous data samples.
As a result, the total distortion increases as T decreases.

In order to incorporate the temporal distortion into total
distortion, we assume that temporal distortion is measured by
the mismatch between actual data samples and omitted data
samples that are replaced by previous data samples. Although
the combination of these two different types of distortion
seems tightly coupled, they can be separated as proved in
Theorem 2. We first prove the error summation property in
the following lemma.

Lemma 1: The total error of the quality management module
can be expressed by sum of the quantization error and the
temporal omission error.

Proof: In order to better understand how errors are in-
troduced in our archiving scheme, we can model its operating
scenario in Fig. 8 concerning errors. In Fig. 8, eL denotes
the quantization error and eT the temporal omission error.
As shown in Fig. 8, these two errors are from two different
distortion sources and are independent.4 In this scenario, the
total error etotal is written as

etotal = x̂− x = (x̂− x̂) + (x̂− x) = eT + eL, (5)

where x, x̂, and x̂ denote raw sensor data, quantized data, and
temporally omitted data, respectively.
Using this result, we are now ready to prove the separation
property.

3QP can cover more range than ∆ does. Using QP instead of ∆ here is
just a matter of better fitting using constants.

4In fact, the quantization process affects the quality of data that are
subsequently used for the estimation of omitted data in temporal dimension.
However, we have empirically found the independence can be assumed in
most cases without loss of generality.

quantization temporal omission

Fig. 8. Block diagram showing errors in quality management module.

Theorem 2 (Separation Property): The joint distortion
Dtotal caused by the quantization from lossy coding and
the omission of data samples along temporal dimension is
separable and can be expressed by sum of both distortions.

Proof: Without loss of generality, we assume an arbitrary
probability density function (pdf) of temporal omission error
between actual data samples and reconstructed data samples,
in which missing samples are covered by previous existing
data samples. This pdf is denoted by fET

(eT), where random
variable ET represents the temporal omission error.

It is well known that the pdf of quantization error from lossy
coding is approximately uniform as follows [23]:

fEL
(eL) =

{
1
∆ −∆

2 ≤ eL ≤ +∆
2

0 otherwise
, (6)

where EL is a random variable that denotes the quantization
error.

We can express Dtotal using joint distribution:

Dtotal =

∫
eT

∫
eL

fETEL(eT, eL) · e2
total deL deT. (7)

Using the result in Lemma 1, we have

Dtotal =

∫
eT

∫
eL

fET
(eT)fEL

(eL) · (eT + eL)2 deL deT

=

∞∫
−∞

fET
(eT)

1

∆

+∆/2∫
−∆/2

(eT + eL)2 deL deT, (8)

which continues in

Dtotal =

∞∫
−∞

fET
(eT)

(
e2

T +
∆2

12

)
deT

≈
∞∫
−∞

fET
(eT) · e2

T deT +
∆2

β
, (9)

where β is a denominator which is 12 for a small ∆ and larger
than 12 in case of a larger ∆ compared to the signal variance.
This is because when the quantization step size ∆ becomes
large, quantization errors can no longer be treated as uniformly
distributed [28].

In the right-hand side of (9), the first term is a distortion
from the temporal omission error and the second term is a
distortion from the quantization error.
In the above theorem, we assume an arbitrary pdf fET

(eT)
that illustrates the distribution of the temporal omission error.
An empirical finding of this distribution is given in Appendix.
Using Theorem 2, the total distortion is simply expressed by
summing distortions from two different sources, which shortly
will be proved as a useful property for modeling distortion.
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Fig. 9. Temporal distortion as a function of T estimated by (10).

Now we turn to the problem of estimating the temporal
distortion model. Specifically, we have empirically found that
the temporal distortion Dtemp is a linear function of the
temporal level T , which is given by

Dtemp = atemp · T + btemp, (10)

where atemp and btemp are constants. The accuracy of (10) can
also be verified by Fig. 9. The linearity of temporal distortion
is attributed to the temporal coding structure shown in Fig. 4
where each increasing temporal level corresponds to a double
of sensor data collections. (If we represented the temporal
distortion as a function of the number of sensor data collection
instead, we would have a convex function.)

Thanks to the separation property proven in Theorem 2, we
can combine both distortions in (4) and (10) to yield the joint
distortion Dtotal as follows:

Dtotal(QP, T ) = Dquant +Dtemp

= aquant exp(bquantQP )

+ atempT + atotal, (11)

where cquant in (4) and btemp in (10) are absorbed into one
constant.

C. QP-Rate-Distortion Model

We now discuss the accuracy of our analytical model. Thus
far, we have discussed the relationship between QP, temporal
level, distortion, and rate, i.e., compressed data size. If we
express the relationship without temporal level, we obtain
the results shown in Fig. 10a, where the temporal change is
implied in the variation of the rate, given a particular QP.
The actual QP-Rate-Distortion surface graph is also shown in
Fig. 10b for comparison. In Fig. 10, we can identify our model
estimation is close to the actual result, which was confirmed
for two other types of data as well.

It is difficult to model our quality-adjustable archiving
scheme using general rate-distortion models. For instance, a
well-established modeling of rate and distortion for DCT-based
video encoder is [28], [31]

D(∆) =
∆2

β
, R(∆) =

1

2
log2(

ε2βσ2
x

∆2
), (12)

where β is identical to β in (9) that is 12 for a small ∆
and larger than 12 in case of a larger ∆ compared to the
variance of the source σ2

x, and ε2 is dependent on a source
distribution [28].

In (12), β needs to be empirically adjusted to account for
a wider range of ∆. However modeling our scheme with (12)
yields discouraging results as shown in Fig. 11. In Fig. 11a,
β was adjusted according to the actual distortion, which leads
to the result identical to the actual distortion curve. On the
contrary, the rate modeling of (12) with obtained β is very
far from the actual rate, as shown in Fig. 11b. Furthermore,
(12) has no provision for data fidelity control over temporal
dimension, in contrast to our analytical model. Thus it is
imperative that an accurate analytical model is used in order
to derive the optimal storage configuration strategy.

V. OPTIMAL RATE ALLOCATION

A. Rate Allocation Strategy

Using the analytical model derived in Section IV, our next
concern is how to find the minimum distortion with a given
specific rate R0. We first consider an optimal rate allocation
problem of single sensor data block, which can be formulated
as follows:

min
{QP,T} Dtotal(QP, T )

s.t. R(QP, T ) ≤ R0

, (13)

where Dtotal(QP, T ) and R(QP, T ) is the distortion and the
rate function derived in (11) and (1), respectively.

Fig. 12 shows the surface graph of Dtotal(QP, T ) derived
in (11), where 10 contour plots, which are isolines of rate, are
drawn together over the surface to reveal contours of same
rate over varying distortion. In Fig. 12, we can see that the
minimum distortion is obtained along the boundary of QP and
T . Specifically, when there is available rate, it has to be first
spent on reducing QP , and only after arriving at the minimum
QP can the rate be spent on increasing the temporal level.

This allocation strategy can also be explained by deriving
the gradient of the distortion function, which is given by

∇Dtotal(QP, T ) = (aquantbquante
bquantQP , atemp). (14)

In (14), the magnitude of atemp is much smaller than that of
the QP component of the gradient, which means it is more
advantageous to adjust QP than temporal level in order to
reach the minimum distortion quickly.

B. Optimal Storage Configuration

We can furthermore extend the rate allocation problem of
single sensor data block to accommodate more general case
of storage configuration problem where multiple data blocks
have to be stored efficiently. As explained in Section III-B,
our scheme supports five supplementary layers that facilitates
graceful degradation of data quality. Specifically in Fig. 3, the
temporal level T is gradually decreased as a data block ages.

Considering total storage efficiency, we are interested in
how to allocate storage to each fidelity cluster and how to
determine QP of each data block. Since each data block
occupies less storage space in lower fidelity clusters than
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Fig. 10. QP-Rate-Distortion surfaces of ambient temperature data set. Temporal change is implied in the variation of rate. Other sensor data types show
similar surfaces.
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Fig. 12. Isolines of rate over distortion surface of ambient temperature data
set. Minimum distortion is obtained along the boundary of QP and T .

higher fidelity clusters, lower fidelity clusters can hold more
data blocks given the same capacity. Besides, it is more
natural to retain lower fidelity data longer than higher fidelity
data. Assuming single sensor data type, the optimal storage

configuration problem can then be formulated as follows:

min
{QPi,Rj}

4∑
j=0

φj

N∑
i=1

Dtotal(QPi, j)

s.t. φj

N∑
i=1

R(QPi, j) ≤ Rj
4∑
j=0

Rj ≤ Rtotal

φ0 � φ1 > φ2 > φ3 > φ4 = 1

, (15)

where QPi denotes QP of each data block, N is the number
of data blocks in the cluster 4, and φj is a natural number
denoting the proportion of data block numbers with respect
to N . This equation describes a storage configuration at a
certain instant where data blocks in lower fidelity clusters
inherited QP’s from data blocks in higher fidelity clusters.
When the total rate budget Rtotal is given, the optimal storage
configuration should yield the overall minimum distortion.

The solution to (15) is an equal QP for each data block such
that

∑4
j=0Rj ≤ Rtotal, which no longer constrains φj to be
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a natural number: φj could be any positive rational number
not less than 1. Hence the relationship between Rj’s is given
by

Rj
Ri

=
φj
φi
· exp(β(∆) · (j − i)) (j ≥ i). (16)

Note that N and φj are system parameters that can be
appropriately adjusted according to the target duration of
retaining sensor data for each cluster.

The same result applies to a case when there are multiple
sensor data types: an equal QP for each data block between
the same type. However different sensor data types imply
different model parameters, which leads to different QP’s for
different data types. In particular, the relationship between two
different sensor data types using QPA and QPB is represented
as follows:∑4

j=0 φjD
′
totalA

(QPA, j)∑4
j=0 φjR

′
A(QPA, j)

=

∑4
j=0 φjD

′
totalB

(QPB, j)∑4
j=0 φjR

′
B(QPB, j)

,

(17)
where we used separate distortion and rate function for each
QP. In (17), the ratio of the weighted sum of distortion slopes
for each temporal level to the weighted sum of rate slopes
for each temporal level is fixed. This result is another case
of constant slope optimization [32], [33]: we obtain same
marginal return for an extra rate spent on either sensor data
type.

Utilizing the results, the optimal storage configuration strat-
egy is first to determine proper QP’s for each sensor data
type in proportion to available storage, and then to encode
sensing data input with the maximum temporal level. As time
elapses, aged data blocks are shifted to next lower clusters
till they reach to the cluster 0. The gradually decreasing
fidelity of sensor data with this scheme results in an efficient
management of storage space.

VI. EXPERIMENTAL RESULTS

A. Compression Efficiency

In order to suggest the efficiency of our scheme, we
compared the compression ratios of popular lossless and lossy
coding methods with our scalable data archiving scheme. We
used data sets downloaded from the Sensorscope website,
which has various WSN deployment scenarios that are mostly
environmental data samples [34]. The results convince us that
our scheme is a viable solution for archiving huge amount of
sensor data.

1) Comparison with Lossless Coding: Lossless coding is
ideal for applications that cannot tolerate any difference be-
tween the original and reconstructed data. Popular lossless
coding schemes that are used in experiments for comparison
with our scheme are as follows: gzip, based on the combi-
nation of LZ77 and Huffman coding [35]; bzip2, based on
the combination of Burrows-Wheeler transform, move-to-front
transform, and Huffman coding [36]; PPMd, an optimized
implementation of prediction by partial matching (PPM) al-
gorithm [37]; Lempel-Ziv-Markov chain algorithm (LZMA),
used in 7-Zip [38]. These state-of-the-art schemes work well
with text and data files.

raw gzip bzip2 PPMd LZMA lossy
0
1
2
3
4
5

67.7

138.2

464.8

Coding methods

C
om

pr
es

si
on

 ra
tio

 (o
rig

in
al

 s
iz

e 
/ c

om
pr

es
se

d 
si

ze
)

 

 

Ambient temperature
Surface temperature
Relative humidity

(e2)

Fig. 13. Compression ratios of our archiving scheme compared with various
lossless coding methods. Our scheme allows distortion up to the sensing
accuracy.

TABLE I
SENSOR ACCURACY AND TYPE FOR THREE DATA TYPES [39]

Data Type Accuracy Sensor Type

Ambient Temperature (AT) ±0.3◦C

Surface Temperature (ST) ±0.3◦C Sensirion SHT75
Relative Humidity (RH) ±2%

Fig. 13 shows the compression ratios of various schemes
that are expressed by the original raw data size divided by
the compressed size. Although the compressed size can be as
small as how much we allow distortion, it might be unfair to
directly compare lossy coding with lossless coding in terms
of coding efficiency. Hence we set out a reference point
for distortion, which is the sensing accuracy explained in
Section II-A. Table I shows sensor types and their accuracies
that correspond to the sensor error margin e. Despite an
impressive result shown in Fig. 13, total distortion incurred
is comparable to the order of sensor error margin e2 in terms
of MSE distortion measure.

2) Comparison with Lossy Coding of Partial Correlation:
In many applications such as the sensor data archiving, we
can relax the requirement of a reconstruction to be identical to
the original. Lossy coding promises much higher compression
ratios than the lossless coding does at the cost of decreased
data fidelity. One can adjust the data fidelity depending on a
desired quality of the reconstructed data: our archiving scheme
accomplishes this through the quantization and the temporal
quality adjustment. The lossy coding has been conventionally
employed to compress multimedia data such as image and
video. We adopt the lossy coding for the sensor data archiving
thanks to the quality adjustability of sensor data.

The quality adjustability and the utilization of both spa-
tial and temporal correlations culminate in outstanding com-
pression efficiency as shown in Fig. 14, where our scheme
contrasts with wavelet coding methods with partial correla-
tion [10]–[12]. Wavelet coding is another popular lossy coding
method apart from DCT-based coding: it is well known that
the performance of wavelet-based and DCT-based codings is
almost the same [40]. The compression ratio shown in Fig. 14
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Fig. 14. Log-scale compression ratios of our archiving scheme compared with
wavelet-based methods using partial correlations at various data fidelities in
terms of the sensing accuracy. Acronyms are explained in Table I.

juxtaposes a consequence of restricting the use of correlation
to either the spatial dimension or the temporal dimension:
the wavelet 1D only exploits temporal correlation for signal
compaction, whereas the wavelet 2D only exploits spatial cor-
relation for signal compaction. After signal compaction, both
methods apply threshold, quantization and entropy encode
processes for the lossy compaction of signal. Between both
wavelet-based methods, the wavelet 1D shows better results
than the wavelet 2D, thanks to the stronger correlation in the
temporal domain than the spatial domain.

B. Storage Efficiency

Although the solutions to (15) are optimal in analytical
sense, we further want to show their optimality for selecting
actual operating points of our archiving scheme. Given N , φj ,
and Rtotal, we first find the optimal QP’s for each sensor data
type using our analytical model, then actual operating points
corresponding to the optimal QP’s are selected to give overall
distortion. We compare this system-wide distortion with other
selection criteria: (i) uniform selection of arbitrary QP’s even
in the same sensor types; (ii) equal QP’s for the same sensor
types, but ignoring their relationship in (17).

Experimental results are shown in Table II, where all of
three storage configuration strategies occupy the same storage
space. However they exhibit dramatic differences in terms of
the system-wide distortion: the uniform QP selection strategy
is the worst as expected, the equal QP for the same sensor
types strategy shows better result, but neither of two strategies
is comparable to our optimal configuration strategy. In other
words, we spend the same amount of storage space for poorer
overall data fidelity, which is equivalent to maintaining the
same quality of data blocks while spending more amount of
storage space.

Table II also shows varying distortion ratios depending on
the transient duration that denotes how long the transient
clusters, i.e., cluster 1, 2, and 3, hold data blocks with respect
to the duration of the cluster 4.5 In particular, parameters for

5Obviously, there is no principle of deciding that a given duration is long
or short. This is a relative measure depending on the system parameters N
and φj .

TABLE II
DISTORTION RATIOS OF THREE STRATEGIES NORMALIZED BY OUR

STRATEGY (N = 10)

Optimal Uniform QP Equal QP Transient Duration

1 8.04 5.38 short

1 8.39 5.59 medium

1 8.91 5.91 long
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Fig. 15. Distortion ratios with with varying sizes of the cluster 0. The ratio
of our optimal configuration strategy, 1, is not shown.

each transient duration are as follows: (i) φ0 = 10, φ1 = 2.5,
φ2 = 2, φ3 = 1.5, φ4 = 1 (short); (ii) φ0 = 10, φ1 = 4,
φ2 = 3, φ3 = 2, φ4 = 1 (medium); (iii) φ0 = 10, φ1 = 7,
φ2 = 5, φ3 = 3, φ4 = 1 (long). In Table II, we can identify
that both distortion ratios increase as the transient duration
increases.

We are also interested in the change of distortion ratios as
the number of archival data blocks in the cluster 0 increases.
As long as these blocks are to be permanently archived (or at
least archived for a long time), the proportion φ0 will keep
increasing, representing an increasing portion of the cluster 0.
Fig. 15 shows how distortion ratios change with respect to in-
creasing φ0. As φ0 increases, archival data blocks in the cluster
0 will dominate the overall distortion. Thus distortion ratios
will be eventually bounded by results solely taking account
of the cluster 0, which is also shown in Fig. 15. Although
Fig. 15 shows the tendency of decreasing distortion ratios as
φ0 increases, we can conclude that inevitable differences exist
between the optimal and suboptimal configuration strategies.

Since the results in Table II and Fig. 15 are distortion ratios
normalized by our optimal distortion, cumulative distortion
will increase as N increases to practical values for storage
configuration. This result clearly shows the importance of
the optimal storage configuration that has to be derived from
proper analytical models; otherwise storage space would be
wasted.

VII. CONCLUSION

We have proposed a new archiving scheme for big sensor
data that leverages the three key characteristics of typical
sensor data such as quality adjustability, data aging, and
spatio-temporal correlation. Our lossy coding scheme allows a
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significant saving of storage space without compromising key
features of sensor data. In addition, quality of sensor data is
gracefully degraded over time to relinquish the storage space.

When numerous data blocks from various sensor types are
stored, storage should be optimally managed to maximize the
space saving for given data fidelity. To this end, we derived
analytical models that reflect the characteristics of our lossy
coding scheme and solved the optimal storage configuration
problem using these models. Experimental results showed
significant savings of storage space and the optimality of our
storage configuration strategy.

APPENDIX
DISTRIBUTION OF TEMPORAL OMISSION ERROR

We can model the distribution of the temporal omission
error using the mixture of the Dirac delta function and
Laplacian distribution, which is an example of zero-inflated
model [41].

Let p denotes an inflation term that indicates point mass
at zero, then the rest of probability mass (1 − p) can be
represented using the pdf of Laplacian. This zero-inflated
Laplacian distribution is given by

fET
(eT) =

{
p · δ(eT) eT = 0

(1− p) · λ2 exp(−λ|eT|) eT 6= 0
, (A.18)

where λ is the shape parameter of Laplacian distribution.
We can identify that (A.18) follows the actual distributions
properly in Fig. 16 where fET

(eT) was drawn over the
histogram of error between actual and omitted data samples.

Since the mean of fET
(eT) is zero, its variance σ2

ET
is

equivalent to the distortion from the temporal omission error.
The range of errors between actual and omitted data samples
that are replaced by previous data samples is widened as more
data samples are dropped along the temporal dimension, which
equates to decreasing p in (A.18).
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