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Abstract
Exponential Random Graphs Models (ERGM) are
common, simple statistical models for social net-
work and other network structures. Unfortunately,
inference and learning with them is hard even for
small networks because their partition functions are
intractable for precise computation. In this paper,
we introduce a new quadratic time deterministic
approximation to these partition functions. Our
main insight enabling this advance is that subgraph
statistics is sufficient to derive a lower bound for
partition functions given that the model is not dom-
inated by a few graphs. The proposed method dif-
fers from existing methods in its ways of exploiting
asymptotic properties of subgraph statistics. Com-
pared to the current Monte Carlo simulation based
methods, the new method is scalable, stable, and
precise enough for inference tasks.

1 Introduction
Social networks are becoming central components to many
aspects of marketing, recruiting, web search, and educa-
tion programs [Kempe et al., 2003; Cetintas et al., 2011;
Mancilla-Caceres et al., 2012]. Careful use of social network
analysis in those areas is the key to future advances. For that
reason, many researchers and practitioners model their rele-
vant social networks and learn them from data [Carrington et
al., 2005]. Many of those social networks are large, and pre-
cise modeling of them is difficult. A family of simple models
called Exponential Random Graph Models (ERGM) [Robins
et al., 2007] is commonly used by researchers and practition-
ers for this purpose.

An ERGM defines a distribution over all graphs of n nodes.
Coefficients and subgraph statistics, such as number of edges,
triangles, and k-stars, are then used to specify ERGM distri-
butions [Robins et al., 2007]. The model captures the correla-
tion of network sub-structures and enables various inferences
on complex networks. For example, we can tell whether tran-

sitivity is prominent in a network by fitting an ERGM with
related subgraphs features, such as triangles.

Learning ERGMs from data is done by Maximum Like-
lihood Estimation (MLE). Unfortunately, such learning is
hard even for networks of modest sizes (e.g. 40 nodes)
because calculating normalizing constants (partition func-
tions) precisely for such models is intractable. For this rea-
son most current techniques involve sampling using Markov
Chain Monte Carlo (MCMC) [Handcock et al., 2003; van
Duijn et al., 2009]. This often results in intractable com-
putation or highly imprecise results for these modest-size-
or-larger networks [Bhamidi et al., 2008; Snijders, 2002;
Handcock, 2003; Hunter et al., 2012].

Recently, Chatterjee and Diaconis [Chatterjee and Dia-
conis, 2011] derived an analytic approximation to the log-
likelihood function of ERGM by applying a new large de-
viation principle result on Erdös-Rényi models. Chatter-
jee and Diaconis’s theoretical analysis proves a strong con-
vergence result on their approximation, but it only applies
to ERGMs with uniformly non-negative/non-positive coeffi-
cients for subgraph features.

In this paper, we introduces a new deterministic approxi-
mation solution which generalizes Chatterjee and Diaconis’s
approximation for estimating ERGM partition functions. The
two approximations are asymptotically equivalent for large
n. However, instead of complex large deviation analysis, we
derive the new approximation using much simpler analysis
based on weaker convergence results. Moreover, our analysis
lifts the unrealistic condition on uniformly non-negative/non-
positive subgraph feature coefficients, enabling application
of the approximation to the whole subgraph feature coeffi-
cient space. Finally, we provide a constructive and pragmatic
approach to the problem, which enables us to evaluate the
accuracy of the approximation empirically against common
stochastic approximation methods in realistic settings.

Specifically, we present a quadratic time (or linear time wrt
the number of random variables) deterministic approximation
to the log partition function of ERGMs. Asymptotic proper-
ties of the subgraph statistics space enable this new approxi-
mation. The approximation works as follows: given (coeffi-



feature count density
edge 7 0.333 (7/21)

triangle 1 0.029 (1/35)
2-star 11 0.105 (11/105)
3-star 5 0.036 (5/140)

rectangle 0 0 (0/70)

Figure 1: An example network of order n = 7 (In ERGM,
edges are random variables). Table on the right shows the
sufficient statistics (densities) for an ERGM with edge, trian-
gle, 2/3-stars and rectangle as features.

cient) parameters θ of an ERGM, find that edge-count u (be-
tween 0 and

(
n
2

)
) that maximizes γ̃(θ, u) = θT ρ(u)+C(n, u)

(See (8) for definition), where ρ(u) is a vector of subgraph
statistics approximated for graphs with u edges and function
C(n, u) approximates the logarithm of the number of graphs
with subgraph statistics close to ρ(u). Once the maximiz-
ing u is found, we estimate the log partition function lnZ(θ)
by γ̃(θ, u). The approximation works because this ρ(u) cap-
tures the subgraph statistics of a large (asymptotically) mass
of graphs of n nodes. So, in a sense, many graphs would
look similar from a subgraph statistics perspective. We also
reveal that θ = Θ(n2) is a necessary condition for θ to be
asymptotically relevant in an ERGM for network of order n.

Our results show that the new method performs well exper-
imentally comparing to existing sampling methods [Gelman
and Meng, 1998; Handcock et al., 2003] on synthetic data
and real-world social networks. Our results also show that the
new algorithm yields reliable approximation for many models
when the size of the network is larger than 30.

The rest of the paper is organized as follows: Section 2
reviews ERGM, Section 3 describes the components of the
approximation and key theoretical results, Section 4 describes
our experimental evaluation, Section 5 reviews related work
and Section 6 concludes the paper.

2 Background
An ERGM defines the following distribution over order-n
graphs g ∈ G:

pθ(g) =
exp

(
θTφ(g)

)
Z(θ)

and Z(θ) =
∑
g∈G

exp
(
θTφ(g)

)
(1)

where φ(g) is the feature vector for graph g ∈ G; the parame-
ter θ is a real vector; partition function Z(θ) is a normalizing
constant.

The feature vector φ(g) may include any network and
nodal attributes of g , and the edge statistics is almost al-
ways included [Robins et al., 2007]. In this work, we fo-
cus on undirected graphs and subgraph statistics features.
Specifically, for a set of subgraph structures of interest
{L1, . . . , Lr}, the feature vector of undirected graph g can
be defined with subgraph densities as below:

φ(g) =

(
t(g, L1)

t(Kn, L1)
,
t(g, L2)

t(Kn, L2)
, . . . ,

t(g, Lr)

t(Kn, Lr)

)
(2)

Here t(g, Li) counts the number of subgraphs in g that are
isomorphic to Li; Kn is the order-n complete graph, there-
fore t(Kn, Li) =

(
n
vi

)
t(Kvi , Li) is a constant for any Li of

order vi. Notice that the simplest subgraph K2, or edge, is
almost always included as a feature in ERGMs. Its role in the
model is similar to that of the intercept term in most linear
regression models [Robins et al., 2007; Hunter, 2007]. For
the rest of the paper, we assume K2 is always included in the
feature subgraphs.

Example: Figure 1 illustrates a simple example network of
order 7. It has seven edges, one triangle, eleven 2-stars, five 3-
stars and no rectangle. The third column shows the subgraph
densities of the network. For example, the 7-node labeled
graph can have at most

(
7
3

)
× 1 = 35 triangles, therefore the

triangle density is 1/35 ' 0.029.
Given a network g, the MLE of parameter vector θ is:

θ∗= argmax
θ

`(θ|g)= argmax
θ

{
θTφ(g)− lnZ(θ)

}
(3)

In this paper, we are interested in approximation of the log
partition function lnZ(θ).

3 Approximating Log Partition Functions
In this section, we derive a deterministic approximation to
the log partition function lnZ(θ) and analyze the behavior
of θ for networks of different sizes. We first introduce the
counting function for graphs with the same feature vector,
which leads to a set of edge-number induced lower bounds
of lnZ(θ) and its approximation. Figure 2 gives an overview
of the new approach.

3.1 Graph counting in the feature space
We introduce the key concept of graph counting function for
the feature space of ERGM. Let φ : G → H be the function
that maps a graph in g ∈ G to the subgraph density space
H of the graphs. For h ∈ H, we define counting function
#(h) = |Gh| where Gh = {g ∈ G|φ(g) = h}|, i.e. the
number of graphs in G having h as subgraph densities. We
re-write the partition function (1) as a compact form using
counting function1:

Z(θ)=
∑
h∈H

#(h) exp
(
θTh

)
=
∑
h∈H

exp
(
θTh+ ln #(h)

)
(4)

Notice that when θ=0, each term in (4) simply counts the
graphs with given subgraph configuration, and the normaliz-
ing constant becomes the total number of graphs |G|. Later
we will show how the graph counting interpretation helps in
computing lnZ(θ).

Let L1, L2, . . . , Lr be simple graphs of interest and vi be
the number of nodes for Li. The following lemma provides
an upper bound to |H|. Under the assumption ∀i, n � vi
and n � r, the lemma establishes reasonable error bounds
for several arguments in the rest of the paper:

Lemma 1. For v∗ = max{v1, . . . , vr}, it holds that ln |H| ≤
rv∗ lnn.

1Note that all isomorphic graphs have the same subgraph densi-
ties, but the reverse it not true. Two non-isomorphic graphs may also
have the same subgraph densities.



lnZ(θ) maxu γ(θ, u) maxu γ̃(θ, u)
≥ ≈
a© b©

Figure 2: The algorithm has two approximations: a© γ(θ, u) is an edge-count-u-induced lower bound for lnZ(θ), Lemma 3
shows the error is bounded in O(lnn); b©We propose γ̃(θ, u) as an approximation to the unknown γ(θ, u), following Lemma
4 and Lemma 5.

Given some set S, and any function f : S → R, a well
known computation trick of computing ln

∑
x∈S exp f(x)

is to use maxx∈S f(x) as an approximation if |S| is small.
Specifically, we have the following bounds:
Lemma 2. Let f be a function on S and x∗ =
argmaxx∈Sf(x), it holds that:

f(x∗) ≤ ln
∑
x∈S

exp f(x) ≤ f(x∗) + ln |S|

Direct application of Lemma 2 to lnZ(θ) yields a sloppy
approximation because the huge size of G. Thanks to Lemma
1, the following approximation to (4) has a much tighter error
bound:

lnZ(θ) = max
h∈H
{θTh + ln #(h)}+O(lnn) (5)

Now, we discuss how to estimate the first term of (5).

3.2 Edge-Count Induced Lower Bounds
In this section, we first derive an alternative representation to
the approximation in (5), then develop an estimator for the
approximation.

Let Gu ⊂ G be the set of graphs with u edges, Hu ⊂ H
be the set of subgraph statistics induced by Gu, and #u(h) be
the restricted counting function which only counts graphs in
Gu, i,e. #u(h) = |{g ∈ Gu|φ(g) = h}|. For any θ and u, we
have the following lower bound to (5):

γ(θ, u)= max
h∈Hu

{θTh+ ln #u(h)}≤max
h∈H
{θTh + ln #(h)}

Notice that the equality holds when K2 is a feature subgraph
and u = argmaxuγ(θ, u), because in this caseHu∩Hu′ = ∅
if u′ 6= u, therefore {Hu} is a partition ofH. Specifically, we
have the following lemma:
Lemma 3. Given K2 is included in subgraph features, the
following equation holds:

max
u
{γ(θ, u)} = max

u

{
max
h∈Hu

{θTh + ln #u(h)}
}

= max
h∈H
{θTh + ln #(h)} = lnZ(θ)−O(lnn)

Lemma 3 shows maxu{γ(θ, u)} can be treated as a good
approximation of lnZ(θ) with bounded error. However, the
computation of γ(θ, u) is still non-trivial. For the rest of this
section, we develop an approximation of γ(θ, u) by exploit-
ing the asymptotic property of #u(h) in Gu.

Define h′ and h∗ as the optimum of γ(θ, u) and maximizer
of #u(h) respectively:

h′ ≡ argmax
h∈Hu

{θTh + ln #u(h)}

and h∗ ≡ argmax
h∈Hu

{ln #u(h)}

The following bounds of γ(θ, u) hold for all θ and u:

θTh∗ + ln #u(h∗) ≤ γ(θ, u) = θTh′ + ln #u(h′)

≤θTh′ + ln #u(h∗) (6)

Notice that the gap between the upper and lower bounds
in (6) is θT (h′ − h∗). When θ = 0, we have h′ = h∗; As
θ deviates from 0, h′ will also stray from h∗ and settle the
conflict between the increasing linear term θTh and a very
quickly diminishing ln #u(h) as we will soon discuss in the
next section. We argue that h∗ can be used to approximate
h′ in terms of estimating the log partition function lnZ(θ)
if the model of interest is not dominated by a few graphs2.
Compared to h′ and ln #u(h′), h∗ and ln #u(h∗) are much
easier to estimate, therefore lead to a feasible approximation
to γ(θ, u).

Estimating h∗:
h∗ maximizes the counting function #u(h) on Gu, therefore
for any randomly picked graph g ∈ Gu, h∗ is the most likely
value of φ(g). If we define a uniform distribution on Gu, then
h∗ is the mode of φ(Gu).

The process of generating graphs randomly from Gu
is known as as Erdös-Rényi (ER) random graphs model
G(n,M) [Erdös and Rényi, 1960]. Here n is the number
of nodes in the graph and M = u is the number of edges. An
alternative (and popular) definition of ER model is G(n, p)
[Gilbert, 1959], in which an order-n graph is constructed by
picking each edge independently with probability p. The dis-
tribution of subgraph statistics for ER models has been ac-
tively studied in probabilistic graph theory[Nowicki, 1989;
Döring and Eichelsbacher, 2009].

Nowicki [Nowicki, 1989] proved that φ(g) is asymptoti-
cally normally distributed for g ∈ G(n, p). The following
lemma extends that result to G(n,M) over Gu using Cheby-
shev’s inequality:
Lemma 4. Let si be the edge count of Li, define function
ρi(u) = (u/

(
n
2

)
)si . Given any edge density µ, write the edge

count u =
(
n
2

)
µ as a function of n. Then for any real vector

a = (a1, a2, . . . , ar)
T and random graph g ∈ G(n,M = u),

the following holds as n→∞:

P

(∣∣aT (φ(g)− ρ(u))
∣∣ ≥ 1

cn

)
→ 0 (7)

where ρ(u) = (ρ1(u), . . . , ρr(u))T and c is some constant.
Notice here ρi(u) is the expected density of Li inG(n, p =

u
/(
n
2

)
). Lemma 4 suggests that the subgraph densities for

2In the cases where a few graphs are dominating the model, h′

will sway away from h∗. Large entries in θ will lead to this scenario
as we will show case in Section 4.3.



Figure 3: Concentration of triangle density h∆ conditioned
on the number of edges u ∈ {20, 30, 40, 50, 60} for unlabeled
graphs (n = 12). In this case, there are

(
12
2

)
= 67 possible

edge counts. Y-axis measures the counting function #u(h∆)
normalized by |Gu|.

most graphs of Gu are close to ρ(u)! In a sense, graphs in
Gu form a cluster in terms of the subgraph statistics. Figure
3 illustrates the phenomenon using order 12 unlabeled graphs
[Brouwer, accessed 2012 Sep 30]. This result suggests that
ρ(u) is a good estimation of h∗ for large n.

Estimating ln #u(h∗):
Eq (7) also hints using |Gu| to approximate #u(h∗) as φ(g)
concentrates. With the help of Lemma 1, it turns out to be a
very good estimation:

Lemma 5. Given an edge count u, it holds
that ln #u(h∗)=

(
n
2

)
H(u

/(
n
2

)
)−O(lnn) where

H(x)=−xlnx−(1−x)ln(1−x).

Estimating Lower Bound γ(θ, u):
Given estimations of h∗ ' ρ(u) and ln #u(h∗) '(
n
2

)
H
(
u/
(
n
2

))
, we immediately have the following approx-

imation to γ(θ, u):

γ̃(θ, u)=θT ρ(u)+C(n, u)=θT ρ(u)+

(
n

2

)
H(u

/(n
2

)
) (8)

Lemma 4 hints that as h′ deviates away from h∗, ln #u(h′)
will diminish rapidly as θTh′ increases linearly. When the
gradient of the linear term is small, h∗ tends to be a good
approximation of h′. If the gradient is steep, h′ will lean
towards the extreme entry in Hu that maximizes the linear
term but leads to a minimal #u(h′), i.e. only one graph (or a
few graphs) in Gu has feature vector h′, but it dominates all
other graphs.

Before the discussion of the approximate algorithm and its
behavior as n→∞, we first investigate the behavior of fixed
θ for networks of different order n.

3.3 Necessary Condition for Asymptotically
Relevant Parameters

The analysis in Section 3.2 also reveals that ERGM with fixed
θ may have very different behavior for networks of different
order n. To see this, let u∗ = argmaxu γ(θ, u), we show that
as n → ∞, any fixed θ becomes asymptotically irrelevant
in maxu γ(θ, u), because u∗/

(
n
2

)
will converge towards 1/2

and h′(θ, u∗) will converge towards ρ(u∗):

Lemma 6. Let u∗ = argmaxu γ(θ, u) with θ fixed, h′(θ, u∗)
converges to ρ(u∗) asymptotically as n→∞.

Lemma 6 implies that the effects of any fixed θ will dimin-
ish to a one-dimensional function ρ(u∗) as n increases. The
shifting of model behavior for different n is closely related
to the discussion of instability of ERGM sufficient statis-
tics [Schweinberger, 2011], and more recently the result of
ERGM’s inconsistency under sampling [Shalizi and Rinaldo,
2013].

Lemma 6 further suggests that for large n, θ needs to be in
Θ(n2) to be relevant in the model. This property leads to a
functional representation of θ:

θ(n, ξ) =

(
n

2

)
ξ (9)

Here ξ is a “scale-free” meta parameter. This representation
will give us a reasonable estimation on the scale of θ, which
is necessary perform point-wise MLE for our approximation
explained in the next section.

3.4 Approximate Algorithm

The estimation of edge-count induced lower bound imme-
diately leads to an approximation of lnZ(θ): Edge Count
Search (ECS) approximation:

ECS(ξ, n)=

(
n

2

)
max

0≤u≤(n
2)

{
ξT ρ(u)+H(u

/(n
2

)
)

}
(10)

Here ξ is the “scale-free” parameter defined in Eq (9). Al-
gorithm 1 reports a straightforward implementation of (10),
which simply searches through all the u to maximize γ̃(θ, u).
Notice that the algorithm requires no extra parameters, which
makes the ECS approximation very easy to apply compared
to current MCMC sampling methods.

Assume the number of subgraph features r � n, the time
complexity of Algorithm 1 is in O(n2), which is linear in
terms of the number of random variables (i.e. edges) of the
model, and quadratic in terms of the order of the network.

A straightforward approximation to the log-likelihood
function `(g|θ) is to replace lnZ(θ) with ECS(ξ, n):

`ECS (θ | g) = θTφ(g)− ECS(ξ, n)

The decision of approximating h′ with h∗ in Section 3.2 leads
to a simple algorithm. As n → ∞, ECS approximation (10)
converges to another closely related approximation proposed
by Chatterjee and Diaconis [Chatterjee and Diaconis, 2011],
who show that for certain θ the approximation will converge
to the true log partition functions. In this paper, we also
show that lnZ(θ) will converge to ECS(θ, n) as n → ∞
in Lemma 6.

In next section, we will resort to experiments to verify the
effectiveness of the proposed algorithm.
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Figure 4: Scatter plot of log-likelihood estimations for ECS
and BR on networks of n = 160. Many BR estimations fail
UB test (11). Otherwise, ECS and BR estimations are very
close (top right).

Algorithm 1 Our new ECS Approximation to the log parti-
tion function lnZ(θ)

Input: model parameter θ and number of nodes n
Output: estimation of lnZ(θ)
Initialize ECS ← −∞
for u← 0 to n(n− 1)/2 do
ECS ← max{γ̃(θ, u), ECS}

end for

4 Experimental Results
In this section, we first use two tasks on synthetic data set to
evaluate the performance of ECS approximation: estimating
log-likelihood functions and MLE estimation. Then we per-
form experiments on a real-world social network dataset to
show case the quality and stability of our algorithm. We im-
plement the commonly used triad model (edge, 2-star, trian-
gle) for the experiments. To mitigate the degeneration prob-
lem in case study, we also used model (edge, altkstar(λ =
1.5)). Here, altkstar is the set of all possible k-stars subgraphs
for a network with their weights being set by a function of λ
and k. For a fixed n, this feature is mathematically equivalent
to including all k-star subgraphs into ERGM, except some
constraints on their parameters.

We compare the output of ECS with the state of the art
MCMC sampling algorithm for ERGMs: Bridge Sampling
[Gelman and Meng, 1998; Handcock et al., 2003; Hunter et
al., 2012].3 The details of our experimental settings are not
described here due to lack of space.

To alleviate the interference of the well known stability
problem from sampling based methods on ERGMs [Hand-
cock, 2003; Bhamidi et al., 2008], we employ the following
upper bound to the log likelihood function as an indicator of
bad approximation:

`(g|θ) ≤ θTφ(g)−max{0,
r∑
i=1

θi} (11)

The bound holds for any θ and g, because lnZ(θ) must be
larger than the log potential of empty graph, which is 0, and

3For large n > 20, finding the exact ERGM log partition func-
tion is intractable because the number of all graphs with n nodes are
O(2n

2
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Figure 5: Relative difference between the estimations of ECS
and BR for different n, given BR estimation passes the UB
test (11). x-axis is the order of the network, y-axis measures
the mean and variance of relative differences.

of complete graph, which is
∑r
i=1 θi. Notice that by design,

ECS will never violate the bound. Because for any θ, we have
γ(θ, 0) = γ̃(θ, 0) and γ(θ,

(
n
2

)
) = γ̃(θ,

(
n
2

)
). We apply this

upper bound test (UB test) for all log-likelihood estimations.

4.1 Estimating log-likelihood functions
We sample synthetic networks from a wide range of param-
eters to evaluate their log-likelihoods. We first generate a
6×6×6 grid of ξ in [−5, 5]×[−5, 5]×[−5, 5], and drop the
tuples in which all values have the same sign. We ended up
with 162 different ξs. Then for each ξ, we sampled networks
for different n ∈ {30, 40, 60, 80, 100, 120, 140, 160}. The
total number of sampled graphs is 1,296. We estimate the
log-likelihood for each sampled network using both Bridge
Sampling and ECS.

Figure 4 reports the scatter plot of the results of both meth-
ods for n = 160. Points close to the dashed line suggest
ECS and BR produce similar results; points far away from the
dashed line suggests the estimation results are very different.
For each estimation of BR, we also check whether it exceeds
the UB test. If the estimation exceeds the log-likelihood up-
per bound, we mark the data point with a cross (×); otherwise
we mark with a blue circle.

From 4 we can tell when BR estimation fails the UB test,
the difference between ECS and BR results are almost neg-
ligible. However, there is a significant portion (about 30%)
of BR estimation results turn out to be unrealistic, while ECS
keeps producing results consistent to (11).

To further compare ECS estimations with the legit
BR estimations, we report their relative differences for
models that BR estimation pass the upper bound test:
reldiff=|(`ECS−`Bridge)/`Bridge|. Figure 5 reports the
mean and variance of the relative difference for networks of
which BR estimation passes the UB test. The plot shows
both the mean and variance decrease as n increases. As n
increases, the estimations become very close.

4.2 MLE estimation
In this section, we use ECS as a sub-routine to perform MLE
estimations on network data. Because the number of sub-
graph features in triad model is r = 3, it is practical to per-
form grid search over a restricted sub-space of ξ. Using real
social networks, we compare the performance of this simple
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Figure 6: Experiments on four real network data set. The x axis of each figure is the node degree and the y axis is the distribution
of the node degree. From the first row, the results of four networks (kapferer2, prison, dolphins and sanjuansur in order) are
presented.

ECS-MLE with MCMC-MLE [Snijders, 2002], which uses
Bridge Sampling as a sub-routine [Handcock et al., 2003].

We first generated a 6×6×6 grid of ξ in in
[−3, 3]×[−3, 3]×[−3, 3]. For each ξ, we sampled one
network of n = 60. The purpose of this procedure is not
to generate samples that represents the underlying ξ well,
but to diversify the sampled graphs. Then we fit the triad
model with the sampled network using both MCMC-MLE
and ECS-MLE. For ECS-MLE, we performed grid search in
a slightly enlarged parameter space with finer granularity.

To evaluate, we estimated the log-likelihood of the network
on both fitted models using Bridge Sampling. As we observed
in Figure 4, BR tends to generate unrealistic estimations. If a
BR estimation fails the UB test, we take the upper bound as
the log-likelihood estimation instead. Notice that the adjusted
value is still valid for the purpose of comparing two MLE
algorithms.

4.3 Case Study on Real Network Data
To study the stability and quality of ECS-MLE results, we
fit two different models with four networks with more than
40 nodes: one kapferer2 from statnet; and the other three
networks, prison, dolphins, and sanjuansur, from CMU CA-
SOS.

We simulate graphs from the model and compare the node
degree distribution to the original network [Hunter et al.,
2008]. The quality of the fitted models is measured by the
total variation distance4.

Both for triad models and alternating k-stars models, we set

4‖f−g‖=supA∈B(f(A)−g(A)), B is a class of Borel sets.

MCMC ECS
triad altkstar triad altkstar

kapferer2 0.88±0.13 0.62±0.29 0.39±0.01 0.43±0.01
prison 0.48±0.09 0.14±0.01 0.15±0.00 0.23±0.01
dolphins 0.65±0.28 0.19±0.01 0.24±0.01 0.19±0.01
sanjuansur 0.61±0.11 0.19±0.01 0.22±0.01 0.16±0.00

Table 1: Total variation distance between the degree distribu-
tion of real network and simulated networks. Average total
variation distances and standard deviations are presented.

the initial value of grid search by using Maximum Pseudo-
Likelihood Estimate (MPLE) as in the MCMC-MLE. For
triad models, our ECS algorithm searched the grid of two pa-
rameters of (edge, 2-star, triangle) ranging the initial value
plus offsets in [−5, 5]×[−5, 5]×[−5, 5], with granularity of
0.2. For alternating k-stars, the ECS searched the grid of three
parameters of (edge, altkstar) ranging, initial value plus off-
sets in [−15,−15]×[−15, 15], with the same granularity.

Figure 6 presents the node degree distributions of the sim-
ulated network models. The first column shows the network
plot of the four networks. The following two columns show
the node degree distributions of the triad and the altkstar mod-
els fitted by the MCMC-MLE. The final two columns show
the node degree distributions fitted by our ECS algorithm.
The bold line is the degree distribution for the original net-
work. The curve with error bar is the degree distribution for
simulated networks. A good match between the two line sug-
gests the simulated networks implies the quality of the fitted
model.

Table 1 shows the total variation distance of node degree
distributions of the original and the fitted. We marked the



minimum total variation among four approaches for each net-
work. As you can see the ECS-MLE results show better per-
formance compared with the MCMC-MLE results in overall.

5 Related Work
Modeling social network structures has been actively studied
in machine learning community. Latent variable models, such
as matrix factorization [Hoff, 2008], block modeling [Airoldi
et al., 2008; Kemp et al., 2006; Ho et al., 2012] and oth-
ers [Miller et al., 2009; Lloyd et al., 2012], represent the re-
lational data with latent variables. Among those, Ho et al.
[Ho et al., 2012] proposed triangular motifs as network repre-
sentation, which is closely related to ERGM’s subgraph fea-
tures. In comparison, ERGM posts a simple model with intu-
itive feature specifications that fits for many network analysis
tasks.

Computing normalizing constants for complex and high-
dimensional models, such as ERGMs, is intractable. MCMC
simulations are arguably among the most effective meth-
ods. Gelman and Meng [Gelman and Meng, 1998] pro-
posed the path sampling formulation to unify acceptance ra-
tio method and thermodynamic integration from theoretical
physics for estimating the (ratios of) normalizing constants.
Annealed importance sampling (AIS) [Neal, 2001], popular
in deep learning literature [Salakhutdinov and Murray, 2008],
can also be viewed as one form of thermodynamic integra-
tion. Although effective in many applications, Bhamidi et
al. [Bhamidi et al., 2008] shows the mixing time for any lo-
cal Markov chain in low temperature regimes of ERGMs is
exponentially slow, rendering these methods computationally
intractable in many cases. In comparison, ECS approxima-
tion is deterministic, therefore avoids the sampling.

ECS approximation is a variational inference algorithm.
In this category, there are many other techniques, such as
pseudo-log-likelihood [Strauss and Ikeda, 1990], mean field
approximation and Bethe approximation [Wainwright and
Jordan, 2008]. In the context of ERGM, these methods have
been reported to be inferior to sampling based methods [van
Duijn et al., 2009], and are usually used to generated initial
states for sampling based algorithms [Hunter et al., 2012].
ECS distinguishes from others by exploiting the asymptotic
property in the feature space of the model. This macro-
scopic view goes beyond the conditional independence in lo-
cal structures of the model, and may be more effective for
complex high-dimensional models like ERGMs.

Many studies have empirically shown that the triad model
tends to produce degenerated models when fitted by the
MCMC-MLE [Hunter et al., 2008; 2012]. We also observe
that the MCMC-MLE fitted triad model was completely de-
generated in kapferer2 and sanjuansur. However, our ECS-
MLE could find an accurate model with no degeneration. To
mitigate this problem, the alternating k-stars [Robins et al.,
2007; Hunter et al., 2012] have been introduced. In our ex-
periments, the MCMC-MLE fitted altkstar outperforms the
MCMC-MLE triad. Although some of the MCMC-MLE re-
sult avoided degeneration, ECS-MLE results either with triad
and altkstar show the better match to the degree distribution
in original network.

6 Conclusions
In this paper, we propose a novel deterministic approximation
to the log partition functions of ERGMs. Computing the par-
tition functions (or the ratio of them) is essential in learning
ERGMs. Our results show the new method is able to over-
come some of the stability issues faced by sampling based
methods without losing accuracy. The new algorithm does
not depends on extra parameters, making it easy to implement
and apply compared to sampling.

We also show that the proposed approximation can be used
to build an effective MLE algorithm for ERGMs. In the fu-
ture, we plan to address various types of MLE problems in
EMRGs by using the proposed approximation principles.

Acknowledgments
Wen Pu and Eyal Amir were supported by NSF EAR grant
09-43627, IIS grant 09-17123, IIS grant 09-68552, and a
DARPAR grant as part of the Machine Reading Program
under AFRL prime contract no. FA8750-09-C-0181. Jae-
sik Choi and Yunseong Hwang were supported by Ba-
sic Science Research Program through the National Re-
search Foundation of Korea (NRF) grant funded by the Min-
istry of Science, ICT & Future Planning (MSIP) (NRF-
2014R1A1A1002662), the NRF grant funded by the MSIP
(NRF-2014M2A8A2074096). The authors would like to
thank David Hunt, Michael Schweinberger, Dan Roth, Ger-
ald DeJong and anonymous reviewers for their constructive
suggestions and feedbacks.

A Appendix
A.1 Proof of Lemma 1
Proof. Subgraph count for Li in any g is bounded by 0 ≤
t(g, Li) ≤ t(Kn, Li) ≤

(
n
vi

)
vi!, therefore

ln |H| ≤ ln

r∏
i=1

t(Kn, Li) ≤ ln

[
r∏
i=1

(
n

vi

)
vi!

]

≤r ln

[(
n

v∗

)
v∗!

]
= r ln

n!

(n− v∗)!
≤ rv∗ lnn

A.2 Proof of Lemma 4
Before the proof of Lemma 4, we need some preparations.
[Nowicki, 1989] proved that a vector of subgraph counts in
G(n, p) are asymptotically normally distributed with a de-
generated co-variance matrix with rank 1, as the order of
the graph n → ∞. In other words, the subgraph counts
are asymptotically linearly dependent on each other. For-
mally, let φ(g′) = {φ1(g′), φ2(g′), . . . , φr(g

′)} be the den-
sities of subgraphs L1, L2, . . . , Lr (i.e. φi(g′) = t(g′,Li)

t(Kn,Li)
)

for g′ ∈ G(n, p), the sizes (number of edges) of these sub-
graphs are s1, s2, . . . , sr, and u ∼ Bin(

(
n
2

)
, p) is the edge

count of g′, we have the following theorem:



Theorem 1. [Nowicki, 1989] For g′ ∈ G(n, p), and real vec-
tor a = (a1, a2, . . . , ar)

T , the following asymptotic property
holds:

n2E
[
aT
(
φ(g′)− ρ(u, p)

)]2
→ 0 (12)

where ρ(u, p) = (ρ1(u, p), . . . , ρr(u, p)), and ρi(u, p) =
sip

si−1 · u

(n
2)
− (si − 1)psi .

In theorem 1, if we set p = u/
(
n
2

)
, then ρi(u, u/

(
n
2

)
) =(

u

(n
2)

)si , which becomes the expected density of Li in

G(n, p = u/
(
n
2

)
).

Next step is to extend the above property from G(n, p) to
G(n,M).
Corollary 1. For g ∈ G(n,M = u), as n → ∞, it holds
that

n2Eu

[
aT
(
φ(g)− ρ(u)

)]2
→ 0

where ρi(u) =
(
u
/(
n
2

))si
Proof. Following theorem 1, let ρi(u) = ρi(u, u/

(
n
2

)
), as

n→∞, the following holds for g′ ∈ G(n, p = (u/
(
n
2

)
)):

n2E
[
aT
(
φ(g′)− ρ(u)

)]2
→ 0

⇒n2E
[
Eu
[
aT
(
φ(g′)− ρ(u)

) ∣∣u]2]→ 0

⇒n2
∑
u

p(u)Eu
[
aT
(
φ(g′)− ρ(u)

) ∣∣u]2 → 0

Because
∑
u p(u) = 1 and p(u) > 0, the claim holds.

Let c be some positive constant, apply Chebyshev’s in-
equality to the linear combination aTφ(g), we get:

P

(∣∣aT (φ(g)− Eu (φ(g)))
∣∣ ≥ 1

2cn

)
≤ 4c2n2Var(aTφ(g))

(13)

Now we start to prove Lemma 4.

Proof of Lemma 4. We first define function ε(u):

ε(u) = aT (Eu(φ(g))− ρ(u)) (14)

As we know

Eu
(
aT (φ(g)− ρ(u))

)2 ≥ Eu (aT (φ(g)− Eu(φ(g)))
)2

=Var(aTφ(g)) (15)

The equality holds if and only if ε(u) = 0. We can get the
following property after applying it to corollary 1: as n→∞

n2Var
(
aTφ(g)

)
→ 0 (16)

Therefore, as n→∞

n2Eu
(
aT (φ(g)− ρ(u))− ε(u)

)2 → 0

⇒n2Eu
(
aT (φ(g)− ρ(u))

)2 − n2ε(u)2 → 0

⇒|ε(u)| < 1

2n
(17)

The last step used corollary 1.
We slacks (13) using (15), and rewrite the inner expectation

term using (14):

P

(∣∣aT (φ(g)− ρ(u))− ε(u)
∣∣ ≥ 1

2cn

)
≤ 4c2n2Eu

(
aT (φ(g)− ρ(u))

)2
(18)

Using (17), we can get

P

(∣∣aT (φ(g)− ρ(u))− ε(u)
∣∣ ≥ 1

2cn

)
≥ P

(∣∣aT (φ(g)− ρ(u))
∣∣ ≥ 1

cn

)
Therefore, apply corollary 1, as n→∞, we get

P

(∣∣aT (φ(g)− ρ(u))
∣∣ ≥ 1

cn

)
→ 0

A.3 Proof of Lemma 5
Proof. Let Gu be the set of graphs with edge count u, since
h∗u is the maximizer, we have

#(h∗u) ≥ |Gu|
|H|

Together with the trivial #(h∗u) ≤ |Gu|, we can get:
ln |Gu| − ln |H| ≤ ln #(h∗u) ≤ ln |Gu| (19)

Apply Stirling’s approximation on ln |Gu|:

ln |Gu| = ln

((n
2

)
u

)
' (

(
n

2

)
− u) ln

(
n
2

)(
n
2

)
− u

+ u ln

(
n
2

)
u

=

(
n

2

)
H(u

/(n
2

)
) (20)

Therefore the claims hold.

A.4 Proof of Lemma 6
Proof. By definition h′(θ, u∗) is vector of densities ranging
in [0, 1], therefore the product |θTh′(θ, u∗)| is bounded by
constant

∑
i |θi|.

Let α = maxuH(u/
(
n
2

)
) ≈ H(1/2), Lemma 5 shows that

ln #u∗(h
∗(u∗)) =

(
n

2

)
α−O(lnn) ≈ Ø(n2)

Because Eq (6) implies

ln #u∗(h
∗(u∗))−

∑
i

|θi| ≤ ln #u∗(h
′(θ, u∗))

≤ ln #u∗(h
∗(u∗))

as n→∞ we have:
ln #u∗(h

′(θ, u∗))→ ln #u∗(h
∗(u∗))

Let b be some real vector, assume there is some ε > 0 so that
as n→∞ we have:

|bT (h′(θ, u)− ρ(u∗))| ≥ ε
In this case, Lemma 4 implies ln #u∗(h

′(θ, u∗)) → 0.
However, given that ln #u∗(h

∗(u∗)) is in Ø(n2), it contra-
dicts with the definition of h′(θ, u). Therefore, h′(θ, u) →
ρ(u∗).
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