
Statistical inference with 

graphical models

Jaesik Choi
Probabilistic Artificial Intelligence Lab (PAIL)

Ulsan National Institute of Science and Technology (UNIST)

http://pail.unist.ac.kr/jaesik

1Jaesik Choi

* Includes some slides from Lise Getoor (U of Maryland)

http://pail.unist.ac.kr/jaesik


Contents

● Machine Learning Revisited

● Bayesian Learning

● Graphical Models and Inference Algorithms

● Lifted Graphical Models and Inference

● Relational Kalman Filtering

● Appendix: Kaggle Competition
2Jaesik Choi



What is the Machine Learning problem?
Guessing game

● We want to correctly classify an event.

● E.g., Guessing game: occupation of the attendee.

● Input features x: 

● Glasses

● Height

● Gray hair

● Clothe

● …

● Output y: 

● Student or not student.
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What are relevant features?
Features: “Gray Hair” and “Clothe”

● We want to classify data and label correctly.

● E.g., Guessing game: occupation of the attendee.

● Input features x: 

● Glasses

● Height

● Gray hair (black:0 ~ completely gray:1)

● Clothe (casual:0 ~ formal:1)

● …

● Output y: 

● Student (+) or not student(-).
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How does the data look like?
Let’s plot the data (x,y)
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How can we classify the data points?
With a hypothesis space: e.g., lines 
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How can we classify the data points?
With a hypothesis space: e.g., lines 
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What is the best hypothesis?
Based on a measure: e.g., # of mistakes
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How can we learn the best Hypothesis?
With learning (searching) algo.: e.g., Gradient Decent 
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Machine Learning: Big Picture
Discriminative Model
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Evaluation:

Training data

Test (or Real) data

Model: Hypothesis Space H

{x, y}

{x, ?} {x, h(x)}

h: the best hypothesis

Accuracy
95.x%

1. Feature Selection

2. Model Selection

3. Learning Algorithm

4. Model Evaluation



Machine Learning: Big Picture
Discriminative Model
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Evaluation:

Training data

Test (or Real) data

Model: Hypothesis Space H

{x, y}

{x, ?} {x, h(x)}

h: the best hypothesis

Accuracy
95.x%

Well, are we done now?
What if, we want to model the data distribution?

1. Feature Selection

2. Model Selection

3. Learning Algorithm

4. Model Evaluation
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How can we model the data distribution?
Model the distribution p(x|y)
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How can we model the data distribution?
Model the distribution p(x|y)

14Jaesik Choi

Gray hair

0 (black) 1 (totally gray)

Clothe

0
(casual)

1
(formal)

+

-
-

-- -
-

-
--

-
-

-

+
+

+
+

+
+

+

+

+

+ +++ +
+

+ +
+

+

+
+

-

-

-
-

-

-
-

+

-
p(x|y=-)

p(x|y=+)



How can we model the data distribution?
Model the distribution p(x|y)
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How can we model the data distribution?

Model the distribution p(x|y=+)
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How can we model the data distribution?

Model p(x|y=+): e.g., Mixture of Gaussian
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How can we model the data distribution?

Model p(x|y=+): e.g., Mixture of Gaussian

18Jaesik Choi

Gray hair

0 (black) 1 (totally gray)

Clothe

0
(casual)

1
(formal)

+ +
+

+
+

+
+

+

+

+

+ +++ +
+

+ +
+

+

+
+

+

p(x|y=+)

A

B

C

Model: Hypothesis Space H

A

B

C

D

E

D

E

Hope that p(x|y=+)  p(x|h)p(h|y=+)



How can we model the data distribution?

Model p(x|y=+): e.g., Mixture of Gaussian
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Machine Learning: Big Picture
Generative Model
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Evaluation:

Training data

Test (or Real) data

{x, y}

{x, ?} {x, h(x)}

h: the best hypothesis

Accuracy
95.x%

Well, are we done now?
What if, x includes many features beyond gray hair & clothe?

1. Feature Selection

2. Model Selection

3. Learning Algorithm

4. Model Evaluation      and Sample(Data) Generation

Model: Hypothesis Space H

A (50%)

B (10%)

C (40%)

D

E
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How can we represent p(X), 

if X includes many features?

● A naïve way is to represent the full joint probability.

p(x1,x2,…, xn)

● For discrete variables (e.g., n binary variables)

● We need a probability distribution table with 2^n entries. 

● For continuous variables (e.g., n-variate Gaussian)

● We need a covariance matrix with n^2 entries

22Jaesik Choi



How can we represent p(X), 

if X includes many features?

● A naïve way is to represent the full joint probability.

p(x1,x2,…, xn)

● For discrete variables (e.g., n binary variables)

● We need a probability distribution table with 2^n entries. 

● For continuous variables (e.g., n-variate Gaussian)

● We need a covariance matrix with n^2 entries
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Problem: (1) It’s hard to learn the entries; 
(2) they may be independent each other.  



Independent Random Variables

● Independence of variables

p(xi,xj)=p(xi)p(xj)
● E.g., Bivariate Gaussian, p(xi,xj)=fN(xi,xj;,)

● Which two variables are independent?

24Jaesik Choi

xj

xi

Image sources: stats.stackexchange.com

xj

xi



Factor Graphs

● The probability of a joint assignment of values x to the set of 

variables X is computed as:

𝑝 𝑋 = 𝑥 =
 𝑓∈𝐹𝑎𝑐𝑡𝑜𝑟𝑠 𝑓(𝑥 𝑓 )

𝑍

25Jaesik Choi [slide courtesy of Lise Getoor]

Normalizing constant 
(or Partition function)

Subset of variables that 
participate in the 
computation of f



Factor Graphs: Log-Linear Rep

● Each    represents

exp(𝜃𝐿 , 𝑓𝑖 𝑥𝑖 )

● Each    represents

exp(𝜃𝐺 , 𝑓𝑖,𝑗 𝑥𝑖 , 𝑥𝑗 )

26Jaesik Choi [slide courtesy of Lise Getoor]

x1

x2 x3

x4



Factor Graphs: Log-Linear Rep

● Each    represents

exp(𝜃𝐿 , 𝑓𝑖 𝑥𝑖 )

● Each    represents

exp(𝜃𝐺 , 𝑓𝑖,𝑗 𝑥𝑖 , 𝑥𝑗 )
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x1
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For example, in the Ising Model the 
possible assignments are {-1,+1} and 
one has

𝜙𝑖,𝑗 = exp 𝜃𝑖,𝑗𝑥𝑖𝑥𝑗

Positive 𝜃𝑖,𝑗 encourages neighboring 

nodes to have the same assignment

Negative 𝜃𝑖,𝑗 encourages contrasting 

assignment



Markov Networks
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x1

x2 x3

x4

● Markov networks (aka Markov random fields) can be viewed 

as a special cases of factor graphs.

x1

x2 x3

x4
𝝓𝟏, 𝟐, 𝟒 𝝓𝟑, 𝟒

𝝓𝟐, 𝟑



How can we Inference with Factor Graphs?
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x1

x2 x3

x4

𝑝 𝑥1, 𝑥2, 𝑥3, 𝑥4 = 𝜙1 𝜙2 𝜙3 𝜙4 𝜙1,2 𝜙1,3𝜙2,3𝜙2,4𝜙3,4

e.g., 𝜙𝑖,𝑗 = exp 𝜃𝑖,𝑗𝑥𝑖𝑥𝑗



How can we Inference with Factor Graphs?
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How can we Inference with Factor Graphs?
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e.g., 𝜙𝑖,𝑗 = exp 𝜃𝑖,𝑗𝑥𝑖𝑥𝑗
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How can we Inference with Factor Graphs?
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How can we Inference with Factor Graphs?
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x2 x3

x4

e.g., 𝜙𝑖,𝑗 = exp 𝜃𝑖,𝑗𝑥𝑖𝑥𝑗

𝑝 𝑥4 =  

𝑥3

 

𝑥2

𝜙2 𝜙3 𝜙4𝜙2,3𝜙2,4𝜙3,4𝜙′2,3

=  

𝑥3

𝜙3𝜙4𝜙3,4  

𝑥2

𝜙2 𝜙2,3𝜙2,4𝜙′2,3



How can we Inference with Factor Graphs?
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e.g., 𝜙𝑖,𝑗 = exp 𝜃𝑖,𝑗𝑥𝑖𝑥𝑗
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How can we Inference with Factor Graphs?
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How can we Inference with Factor Graphs?
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x4

e.g., 𝜙𝑖,𝑗 = exp 𝜃𝑖,𝑗𝑥𝑖𝑥𝑗

𝑝 𝑥4 =  
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′ = 𝜙4𝜙′4



How can we Inference with Factor Graphs?
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x4

e.g., 𝜙𝑖,𝑗 = exp 𝜃𝑖,𝑗𝑥𝑖𝑥𝑗

𝑝 𝑥4 =  
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How can we Inference with Factor Graphs?
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x4

e.g., 𝜙𝑖,𝑗 = exp 𝜃𝑖,𝑗𝑥𝑖𝑥𝑗

𝑝 𝑥4 =  

𝑥3

 

𝑥2

𝜙2 𝜙3 𝜙4𝜙2,3𝜙2,4𝜙3,4𝜙′2,3

=  

𝑥3

𝜙3𝜙4𝜙3,4 𝜙3,4
′ = 𝜙4𝜙′4 = 𝜙′′4

We summed (eliminated) out variables.
It is called “Variable Elimination”



How can we Inference with Factor Graphs?

What can happen?
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● The order of elimination does matter!

● What if we have a bad elimination order?

x1 x2 x3 x4

x5



How can we Inference with Factor Graphs?

What can happen?
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● The order of elimination does matter!

● What if we have a bad elimination order? If we eliminate x5…

x1 x2 x3 x4

The computational complexity is exponential to the treewidth
(the size of largest clique in a junction tree)



How can we Inference with Factor Graphs?

Any alternative? Belief propagation
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x1

x2 x3

x4

Intuition: Let’s exchange our opinions! 

e.g., 𝜙𝑖,𝑗 = exp 𝜃𝑖,𝑗𝑥𝑖𝑥𝑗



How can we Inference with Factor Graphs?

Any alternative? Belief propagation
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x1

x2 x3

x4

Intuition: Let’s exchange our opinions! 

e.g., 𝜙𝑖,𝑗 = exp 𝜃𝑖,𝑗𝑥𝑖𝑥𝑗

Time 0: every one has own belief about initial status.
Time 1: Send my belief to my neighbors



How can we Inference with Factor Graphs?

Any alternative? Belief propagation
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x1

x2 x3

x4

Intuition: Let’s exchange our opinions! 

e.g., 𝜙𝑖,𝑗 = exp 𝜃𝑖,𝑗𝑥𝑖𝑥𝑗

Time 0: every one has own belief about initial status.
Time 1: Send my belief to my neighbors.
Time 1.5: Update my belief based on my neighbors.



How can we Inference with Factor Graphs?

Any alternative? Belief propagation
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x1

x2 x3

x4

Intuition: Let’s exchange our opinions! 

e.g., 𝜙𝑖,𝑗 = exp 𝜃𝑖,𝑗𝑥𝑖𝑥𝑗

Time 0: every one has own belief about initial status.
Time t: Send my belief to my neighbors.
Time t.5: Update my belief based on my neighbors.



How can we Inference with Factor Graphs?

Any alternative? Belief propagation
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x1

x2 x3

x4

Intuition: Let’s exchange our opinions! 

e.g., 𝜙𝑖,𝑗 = exp 𝜃𝑖,𝑗𝑥𝑖𝑥𝑗

Time 0: every one has own belief about initial status.
Time t: Send my belief to my neighbors.
Time t.5: Update my belief based on my neighbors.

We hope that it converges to a close-to-optimal value.
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How to Estimate Future Events 

with Graphical Models?

● Choose a graphical model: e.g.,

● Bayesian Networks,

● Markov Random Fields,

● Kalman Filter

● Collect observations:

● Tom sold his home at $0.5 million.

● The mortgage rates increased(↑) to average 5.5%.

● The unemployment rate downed(↓) to 7%.

● Compute conditional probabilities by relationships:

P( value of John’s home | observations )
47

Tom’s home

$0.5 million

John’s home

?

Jaesik Choi

xJohn

xTom

xmortgage

xunemp



Estimating Future Events 

with Large-Scale Graphical Models

● Estimating future events is essential in

● Financial markets (housing)

● Environment (extreme weather, groundwater)

● Energy (smart grid)

48Jaesik Choi

housing weather energy



Challenges: Large-Scale Models

● Hard to handle large numbers of elements

● US housing market: 75.56 million house units

● Hurricane Sandy: spanning 1,100 miles (1,800 km)

● Computational Complexities

● Kalman filter:

O n3 = O 75.563 ⋅ 106 trillion

● Dynamic Bayesian Networks and Markov Random Field: 

O exp𝑛 = O exp75.56 million

49Jaesik Choi



Some Elements Share Relationships

● Elements share Relationships

● If mortgage ↑ 1% → price of Tom’s home ↓ 3%

● If mortgage ↑ 1% → price of John’s home ↓ 3%

● If mortgage ↑ 1% → price of any home in the town ↓ 3%

● Relations over clusters

● Town = {Tom, John, … }

● ∆ price of name′s home

= −3∆Mortgage + 𝜀

● name ∈ Town

● 𝜀𝑁 0, ,Gaussian Noise

50
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Relational Graphical Models
or Statistical Relational Learning (SRL)

51Jaesik Choi [slide courtesy of Lise Getoor]

● Traditional statistical machine learning approaches assume

● A random sample of homogeneous objects from single relation

● Independent, identically distributed (IID)

● Traditional relational machine learning approaches assume:

● Logical language for describing structure in sample

● No noise and no uncertainty

● Real world data sets:

● Multi-relational and heterogeneous

● Noisy and uncertainty



Example: Social Media

52Jaesik Choi [slide courtesy of Lise Geetor]



Social Media Relationships

53Jaesik Choi [slide courtesy of Lise Getoor]



Social Media Relationships

54Jaesik Choi [slide courtesy of Lise Getoor]

Predict:
Sentiment

Friendship/Fan
Affiliations



Massively Open Online Courses (MOOCs)

55Jaesik Choi [slide courtesy of Lise Getoor]



MOOC Relationships

56Jaesik Choi [slide courtesy of Lise Getoor]



MOOC Relationships

57Jaesik Choi [slide courtesy of Lise Getoor]

Predict:
Performance

Role
Participation



What is the difference?

58Jaesik Choi [slide courtesy of Lise Getoor]

Most of the data that is available in the 

newly emerging ear of big data does 

not look like this

Or even like this

It looks more like this



What is Statistical Relational Learning?

59Jaesik Choi [modified from a slide courtesy of Lise Getoor]

● Collection of techniques which combine rich relational knowledge 

AI/DB representations with statistical models

● First-order logic, SQL, graphs, 

● Graphical models, directed, undirected, mixed; relational decision trees, etc.

● Example:

● Markov Logic Networks (Washington and Texas), Bayesian Logic Programs 

(Berkeley & MIT), Probabilistic Relational Models (Stanford), Factorie (UMass), 

Relational Kalman Filtering (U of Illinois & UNIST), and …

● Key ideas

● Relational feature construction

● Collective reasoning

● ‘Lifted’ representation, inference and learning



Lifted Inference
(or First-Order Probabilistic Inference)

60Jaesik Choi [slide courtesy of David Poole]

Relational Models

Probabilistic 

Graphical Models Posterior

Ground

Input:

Output:

Compact:

No cluster:

Ground inference 

(E.g. Variable Elimination)



Lifted Inference
(or First-Order Probabilistic Inference)

61Jaesik Choi

Relational Models

Probabilistic 

Graphical Models Posterior

Lifted Inference

Ground inference 

(E.g. Variable Elimination)

Ground

Relational 

Posterior

Input:

Output:

Compact:

No cluster:

[slide courtesy of David Poole]



Lifted Inference
(or First-Order Probabilistic Inference)

62Jaesik Choi

Relational Models

Probabilistic 

Graphical Models Posterior

Lifted Inference

Ground

Relational 

Posterior

Input:

Output:

Observations

Partial separation & inference*

Compact:

No cluster:

Ground inference 

(E.g. Variable Elimination)

* Before 𝑶 𝒏𝟑 → Now 𝑶(𝒏𝒎𝟐)



Lifted Inference
(or First-Order Probabilistic Inference)

63Jaesik Choi

Relational Models

Probabilistic 

Graphical Models Posterior

Lifted Inference

Ground

Relational 

Posterior

Input:

Output:

Observations
Approximation

Partial separation & inference*

& inference**

Compact:

No cluster:

Ground inference 

(E.g. Variable Elimination)



Main Ideas and Contributions

64

• Representing and maintaining compact structures 

over clusters is feasible, and thus can lead to accurate and 

efficient estimations of future events.

• Scalable Kalman filter

Before: 𝑶 𝒏𝟑 → Now: 𝑶 𝒏𝒎𝟐

• Unified, efficient estimations of discrete-continuous models

Before: 𝑶 𝒆𝒙𝒑(𝒏) → Now: 𝑶 𝒆𝒙𝒑(𝒎)

Jaesik Choi

* approximation



Contents

● Machine Learning Revisited

● Bayesian Learning

● Graphical Models and Inference Algorithms

● Lifted Graphical Models and Inference

● Relational Kalman Filtering

● Appendix: Kaggle Competition
65Jaesik Choi



Kalman Filter

● Kalman Filter is an algorithm which produces estimates of 

unknown variables given a series of measurements (w/ noise) 

over time.

● Numerous applications in

● Robot localization

● Autopilot

● Econometrics (time series)

● Military: rocket and missile guidance 

● Weather forecasting

● Speech enhancement

● …

Jaesik Choi 66



Example – Kalman Filter for John’s Home

67Jaesik Choi

● Input statements

● John’s house price was $0.39M at 2010.

● Each year, John’s house price increases 5%.

● John’s house price is around the sold price.

● John’s house is sold sporadically.

● Question: what is the price of John’s house each year?

John’s home

Tom’s home

Ann’s home



Example – Kalman Filter for John’s Home

68Jaesik Choi

● Input statements

● John’s house price was $0.39M at 2010.

● Each year, John’s house price increases 5%.

● John’s house price is around the sold price.

● John’s house is sold sporadically.

● Question: what is the price of John’s house each year?

John’s home

Tom’s home

Ann’s home

2010 2011 2012

x11'
John x12'

Johnx10'
John

  N(0,2)Sold at $0.44M

x10'
John = 0.39M + John

x11'
John = 1.05x10’ 

John + tras

x11'
John = 0.44M + obs

2013



Why Kalman Filter Takes O(n3) operations?

69Jaesik Choi

John’s home

Tom’s home

Ann’s home

● Kalman Filtering steps

1.  Input: prior belief, Xt N(t,t)

n variables, Xt={xt
John, x

t
Tom, xt

Ann,…}.  

2.  Take the transition model:

Xt+1=ATXt + trans when trans =N(0,T).

3.  Updated covariance matrix: t’=AT
t AT

T+T.

4.  Take the observation model:

Xt+1=AOObst+1 + obs when obs =N(0,O).

5. Kalman gain: K = t’AO
T(AO

t’AO
T+ O)-1.

6.  Output: update belief, Xt+1 N(t+1,t+1)

New mean: t+1 = t +K(Obst+1-t)

New covariance: t+1 = (1-KAO) t’



Why Kalman Filter Takes O(n3) operations?

70Jaesik Choi

● Kalman Filtering steps

1.  Input: prior belief, Xt N(t,t)

n variables, Xt={xt
John, x

t
Tom, xt

Ann,…}.  

2.  Take the transition model:

Xt+1=ATXt + trans when trans =N(0,T).

3.  Updated covariance matrix: t’=AT
t AT

T+T.

4.  Take the observation model:

Xt+1=AOObst+1 + obs when obs =N(0,O).

5. Kalman gain: K = t’AO
T(AO

t’AO
T+ O)-1.

6.  Output: update belief, Xt+1 N(t+1,t+1)

New mean: t+1 = t +K(Obst+1-t)

New covariance: t+1 = (1-KAO) t’

John’s home

Tom’s home

Ann’s home

Inversions and multiplications 

of the n by n matrix

need O(n3) operations.

Σ𝑡 =
𝜎1,1
2 ⋯ 𝜎1,𝑛

2

⋮ ⋱ ⋮
𝜎𝑛,1
2 ⋯ 𝜎𝑛,𝑛

2



Relational Kalman Filter
A set of element shares relationship!

71Jaesik Choi

● Input statements

● Town is a set of houses.

● Town’s houses have initial prices at 2010.

● Each year, Town’s house prices increase 5%.

● Town’s house prices are around sold prices.

● Town’s houses are sold sporadically.

● Question: what is the prices of Town’s houses each year?

Tom’s home

John’s home Town

Ann’s home



Relational Kalman Filter (IJCAI-11):
New Transition Models & Observation Models

72Jaesik Choi

● Input statements

● Town is a set of houses.

● Town’s houses have initial prices at 2010.

● Each year, Town’s house prices increase 5%.

● Town’s house prices are around sold prices.

● Town’s houses are sold sporadically.

● Question: what is the prices of Town’s houses each year?

Tom’s home

John’s home Town

Ann’s home

x10'
Ann

2010 2011 2012

x11'
John

x11'
Ann

x11'
Tom

x12'
John

x12'
Ann

x12'
Tom

x10'
John

x10'
Tom

X10’ 
h = x10’

h’ + town

Sold at $0.44M
x11’ 

h = 1.05x10’ 
h + trans x12’

h = obs12’
h + obs

h, h’ Town



Relational Gaussian Models (UAI-10)

Jaesik Choi 73

● Definitions

● Xt is a disjoint union of m clusters of state variables Xt
i.   

Xt= 𝑖 Xt
i, e.g., X10

i = {x10'
Ann,x

10'
John,x

10'
Tom}.

● Any two state variables in a cluster have the same variance and 

covariances.

For x, x’Xt
i, 

2
x,x= 

2
x’,x’ and for any y, 2

x,y = 2
x’,y

● Property: any multivariate Gaussian of  Xt can be represented 

as a product of pairwise linear Gaussian, i.e., quadratic 

exponentials. (UAI-10)

x10'
Ann

x10'
John

x10'
Tom

X10
i



Relational Gaussian Models (UAI-10)
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● Definitions

● Xt is a disjoint union of m clusters of state variables Xt
i.   

Xt= 𝑖 Xt
i, e.g., X10

i = {x10'
Ann,x

10'
John,x

10'
Tom}.

● Any two state variables in a cluster have the same variance and 

covariances.

For x, x’Xt
i, 

2
x,x= 

2
x’,x’ and for any y, 2

x,y = 2
x’,y

● Property: any multivariate Gaussian of  Xt can be represented 

as a product of pairwise linear Gaussian, i.e., quadratic 

exponentials. (UAI-10)

x10'
Ann

x10'
John

x10'
Tom

X10
i

Groups i & j

Group parameters Individual parameters
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𝑓 𝑥; 𝜇, 𝜎2 =
1

𝜎 2𝜋
𝑒
−
1
2

𝑥−𝜇
𝜎

2

𝑃 x10′
John,x

11′
John 𝑓 x10’

John; 0.39M, 𝜎𝐽𝑜ℎ𝑛
2 ⋅ 𝑓 x11′

John−1.05x10’
John; 0, 𝜎𝑡𝑟𝑎𝑛𝑠

2

2010 2011

x11'
Johnx10'

John

x10'
John = 0.39M + John

x11'
John = 1.05x10’ 

John + tras

Transition modelPrior belief at 10’

x12’
John = obs12’

John + obs

Solve Kalman Filtering by Inference

Product of Gaussian pdfs
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𝑓 𝑥; 𝜇, 𝜎2 =
1

𝜎 2𝜋
𝑒
−
1
2

𝑥−𝜇
𝜎

2

𝑃 x11′
John =  

−∞

∞

𝑃 x10′
John,x

11′
John 𝑑 x10’

John = 𝑓 x11’
John; 0.41M, 𝜎𝐽𝑜ℎ𝑛11

2

𝑃 x10′
John,x

11′
John 𝑓 x10’

John; 0.39M, 𝜎𝐽𝑜ℎ𝑛
2 ⋅ 𝑓 x11′

John−1.05x10’
John; 0, 𝜎𝑡𝑟𝑎𝑛𝑠

2

Marginalize x10’
John Posterior x11’

John

2010 2011

x11'
Johnx10'

John

x10'
John = 0.39M + John

x11'
John = 1.05x10’ 

John + tras

x12’
John = obs12’

John + obs

Solve Kalman Filtering by Inference

Marginalize variables (the previous time step)



Does RKF take less than O(n3) operations?
Answer: Not yet.

77Jaesik Choi

● Kalman Filtering steps

1.  Input: prior belief, Xt N(t,t)

n variables, Xt={xt
John, x

t
Tom, xt

Ann,…}.  

2.  Take the transition model:

Xt+1=ATXt + trans when trans =N(0,T).

3.  Updated covariance matrix:  t’=AT
t AT

T+T.

4.  Take the observation model:

Xt+1=AOObst+1 + obs when obs =N(0,O).

5.  Kalman gain: K = t’AO
T(AO

t’AO
T+ O)-1.

6.  Output: update belief, Xt+1 N(t+1,t+1)

New mean: t+1 = t +K(Obst+1-t)

New covariance: t+1 = (1-KAO) t’

Relational Observation Models

Σ𝑡 =

𝜎𝑥𝑥
2 ⋯ 𝜎𝑥𝑦

2

⋮ ⋱ ⋮
𝜎𝑥𝑦
2 ⋯ 𝜎𝑥𝑥

2

Σ𝑡+1 =
𝜎11
2 ⋯ 𝜎1𝑛

2

⋮ ⋱ ⋮
𝜎𝑛1
2 ⋯ 𝜎𝑛𝑛

2
?



Key Intuition in RKF

Jaesik Choi 78

• Vanilla Kalman filter: • New filtering in RKF :

John

Tom

Ann

John’

Tom’

Ann’

Under some conditions, a set of continuous RVs continues 

to have the same pairwise relationships during filtering.
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• Vanilla Kalman filter: • New filtering in RKF :

John

Tom

Ann

John’

Tom’

Ann’

John’

Tom’

Ann’

Key Intuition in RKF
Under some conditions, a set of continuous RVs continues 

to have the same pairwise relationships during filtering.

Split the cluster
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• Vanilla Kalman filter: • New filtering in RKF :

John

Tom

Ann

John’

Tom’

Ann’

John’

Tom’

Ann’

John

Tom

Ann

John’

Tom’

Ann’

Key Intuition in RKF
Under some conditions, a set of continuous RVs continues 

to have the same pairwise relationships during filtering.

variance

mean
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• Vanilla Kalman filter: • New filtering in RKF :

John

Tom

Ann

John’

Tom’

Ann’

John’

Tom’

Ann’

John’

Tom’

Ann’

John

Tom

Ann

John’

Tom’

Ann’

Key Intuition in RKF
Under some conditions, a set of continuous RVs continues 

to have the same pairwise relationships during filtering.
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• Vanilla Kalman filter: • New filtering in RKF :

John

Tom

Ann

John’

Tom’

Ann’

John’

Tom’

Ann’

John’

Tom’

Ann’

John

Tom

Ann

John’

Tom’

Ann’

Key Intuition in RKF
Under some conditions, a set of continuous RVs continues 

to have the same pairwise relationships during filtering.

Split the cluster

O(𝐧𝟑) O(𝐧 ⋅ m2)

m: # of clustersn: # of variables
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• Vanilla Kalman filter: • New filtering in RKF :

John

Tom

Ann

John’

Tom’

Ann’

John’

Tom’

Ann’

John’

Tom’

Ann’

John

Tom

Ann

John’

Tom’

Ann’

Key Intuition in RKF
Under some conditions, a set of continuous RVs continues 

to have the same pairwise relationships during filtering.

O(𝐧𝟑) O(𝐧 ⋅ m2)

m: # of clustersn: # of variables

Theorem: Two variables in a cluster continue to have the same variance and 

covariances at the next time step if the same # of obs is made.

Split the cluster
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The Relational Kalman Filtering Algorithm

Marginalize all 𝐗𝒕 in time step, t

𝝓′ 𝑿𝒕+𝟏 ←  𝝓𝑻 𝑿𝒕+𝟏 𝑿𝒕 𝝓(𝑿𝒕) 𝒅𝑿𝒕

Apply update models
𝝓 𝑿𝒏𝒆𝒘

𝒕+𝟏 ← 𝝓′ 𝑿𝒏𝒆𝒘
𝒕+𝟏 ⋅ 𝝓𝑶(𝑶

𝒕+𝟏|𝑿𝒕)

Split variables from clusters

given different # of obs.
𝑿𝒏𝒆𝒘
𝒕+𝟏 ← 𝑺𝒑𝒍𝒊𝒕(𝑿𝒕+𝟏, 𝑶𝒕+𝟏)

Return 𝝓 𝑿𝒏𝒆𝒘
𝒕+𝟏 , go to time step, t+1

With dense observations,

m << n is maintained!
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The Relational Kalman Filtering Algorithm

Marginalize all 𝐗𝒕 in time step, t

𝝓′ 𝑿𝒕+𝟏 ←  𝝓𝑻 𝑿𝒕+𝟏 𝑿𝒕 𝝓(𝑿𝒕) 𝒅𝑿𝒕

Apply update models
𝝓 𝑿𝒏𝒆𝒘

𝒕+𝟏 ← 𝝓′ 𝑿𝒏𝒆𝒘
𝒕+𝟏 ⋅ 𝝓𝑶(𝑶

𝒕+𝟏|𝑿𝒕)

Split variables from clusters

given different # of obs.
𝑿𝒏𝒆𝒘
𝒕+𝟏 ← 𝑺𝒑𝒍𝒊𝒕(𝑿𝒕+𝟏, 𝑶𝒕+𝟏)

Return 𝝓 𝑿𝒏𝒆𝒘
𝒕+𝟏 , go to time step, t+1

With dense observations,

m << n is maintained!

Next slide



Relational Kalman Filtering Algorithms

● Filtering is inference with RGMs:

● Marginalize all state variables (xjohn
10, xTom

10 ,…) at time t.

● Marginalize a variable xXt (X’t= Xt\x)

● Marginalization preserves pair-wise potentials.

● Continue to marginalize all remaining variables.
Jaesik Choi 86



● Filtering is inference with RGMs:

● Marginalize all state variables (xjohn
10, xTom

10 ,…) at time t.

● Marginalize a variable xXt (X’t= Xt\x)

● Marginalization preserves pair-wise potentials.

● Continue to marginalize all remaining variables.
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Constant Sum of variables Square of sum of variables

Relational Kalman Filtering Algorithms



Experiments (Simulation)

● Given: housing market example.

● Observations for:

● Mortgage Rate

● Sales prices for a set of houses

● Estimate the price of each house (mean and variance)

Jaesik Choi 88



Experiments (Groundwater Models)

● Data is extracted in the largest aquifer (Ogallala) in US.

● Pumping (for farming) depletes many of water wells.

● Estimating level of groundwater is critical.

Jaesik Choi 89

US drought maps (New York Times)



Experiments (Groundwater Models)

● Dataset

● The model has measures (water levels) for 3078 water wells.

● The measures span from 1918 to 2007 (about 900 months).

● It has over 300,000 measurements.

● Cluster: 3078 wells into 10 groups.

● Train parameters using the auto regression (AR).

● Vanilla Kalman filter

● RKF

Jaesik Choi 90



Experiments (Groundwater Models)

● Results ( root-mean-square error)

● Vanilla Kalman Filter: 4.17 feet (about 11.59 sec / filtering step).

● RKF: 3.60 feet (about 0.60 sec / filtering step).

Jaesik Choi 91

RKF

Vanilla KF

Fe
e
t 

(w
at

e
r 

le
ve

l)

Months

Observations



Experiments (Groundwater Models)

● Additional experiment forVanilla KF + RKF

● KF for coefficients of the transition model.

● RKF for the observations model and covariance matrix (only) of the

transition model.

● Result: 0.83 feet (about 11.49 sec / filtering step).
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RKF

Vanilla KF

Fe
e
t 

(w
at

e
r 

le
ve

l)

Months

Observations



Summary of RKF

● I present a new filtering algorithm that enables linear time 

exact Kalman filtering in contrast to the cubic time traditional 

KF.

Jaesik Choi 93

John

Ann

Tom



Exchangeable Random Variables (RVs)

Jaesik Choi 94

● Exchangeability is already exploited and utilized in many applications such as 

image & video retrieval and network analysis. 

● Examples

● Image & video matching: exchangeable image features

● Econometrics: a set of exchangeable portfolio (in risk analysis)

● The Netflix prize: groups of users & groups of movies

Exchangeable RVs: a set of RVs, which are interchangeable among others. 

P x1, ⋯ , xn = P xπ 1 , ⋯ , xπ n ,    π: a permutation



De Finetti’s theorem and Dirichlet Process

[de Finetti, 1931] shows that any joint probability of infinite, exchangeable, 

binary RVs can be represented by a mixture of iid RVs. 

Exchangeable RVs: a set of RVs, which are interchangeable among others. 

P x1, ⋯ , xn = P xπ 1 , ⋯ , xπ n ,    π: a permutation

θ

x1 x2 x5x4x3

𝝓
 
0

1

θt 1 − θ n−t𝜙 θ dθ

when t =  i xi and 

𝜙(θ) is a prior

[Carbonetto, Kisynski, de Freitas, Poole, 2005] uses the Dirichlet process 

to model infinite, exchangeable discrete variables.

Research issues: continuous RVs, finite RVs (e.g., errors)

x5

x4 x3

x2

x1

P
lim
n→∞

P x1, ⋯ , xn

95



Relational Variational Inference (UAI-12)

The Dirichlet process does not have a closed-form

An inference issue: the product of Dirichlets is difficult to handle.

𝑃1 𝑡 =
𝑛

𝑡
 
0

1

θ1
t 1 − θ1

n−tϕ1 θ1 dθ1

This work

θ1

𝒕

𝝓𝟏
θ2

𝒕

𝝓𝟐

t =  𝑥𝑖

θ1
t 1−θ1

n−t ⋅ θ2
t 1−θ2

n−t ≠

𝛉𝟑
𝐭 𝟏−𝛉𝟑

𝐧−𝐭

θ1

x1 x2 x5x4x3

𝝓𝟏
θ2

x1 x2 x5x4x3

𝝓𝟐

[Carbonetto, et al., 2005] 

P1 x1, ⋯ , xn =  
0

1

θ1
t 1 − θ1

n−tϕ1 θ1 dθ1

=  
0

1

𝐟𝐁𝐢𝐧𝐨𝐦𝐢𝐚𝐥(𝐭; 𝐧, 𝛉𝟏) ϕ1 θ1 dθ1

Gaussian approx. solves the issue!
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θd

x1 x2 x5x4x3

𝝓𝒅

For binary exchangeable RVs.

Input: P1 x1, ⋯ , xn A mixture of iid RVs

For continuous exchangeable RVs.

θc

x1 x2 x5x4x3

𝝓𝒄

Input: Pc x1, ⋯ , xn
A mixture of iid RVs A mixture of pdfs

A mixture of MoGs (KDE) 

θc

Fn

𝝓𝒄

Fn t =  1{𝑥𝑖 ≤ 𝑡}

θd

𝒕

𝝓𝒅

A mixture of Gaussians (MoGs)

A mixture of Binomial 

This work: variational RHMs

[Hewitt & Savage, 1955] 

[de Finetti, 1931] 
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x5

x4 x3

x2

x1

P

x5

x4 x3

x2

x1

P

Relational Variational Inference (UAI-12)

Mixture of Gaussians for Relational Hybrid Models

t =  𝑥𝑖



Relational Variational Inference (UAI-12)
Experiments at Groundwater

 Water level data over 3,078 wells from 

1918 to 2000

 Clustering wells into 10 groups of 

(approx.) exchangeable RVs

 Learning a mixture of cdf (MoGs) for 

each group (training)

 Calculating the conditional probability of 

a set of RVs (testing)

37.9 secsInference time: 0.3 secs (w/ similar precision)

Colorado Kansas

Nebraska

Variational Models

Colorado Kansas

Nebraska

Traditional Models
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Conclusion:  The Big Picture:
Towards Human-Level AI

● Human-like Knowledge Representation:  Logic + Probability:

● Intuitively speaking:

● Relational Models ≈ Probabilistic First-Order Logic (FOL) 

≈ Probabilistic Relational Calculus (Relational DB).

● Human-level knowledge representation

E.g., A (owner) files BankruptcyA’s house is foreclosed.
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Logic ProbabilityRelational

Models



Contents

● Machine Learning Revisited

● Bayesian Learning

● Graphical Models and Inference Algorithms

● Lifted Graphical Models and Inference

● Relational Kalman Filtering

● Appendix: Kaggle Competition
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Kaggle: Online Machine Learning Playground
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● Kaggle provides an online platform to learn and compete for 

several machine learning problems. 

(https://www.kaggle.com/competitions)

● When there is a host who has a machine learning problem 

to solve

● E.g., GE want to optimize the flight routes given an origin 

and destination and traffic and weather conditions. ($220K)

● Data scientists compete to solve the problems.

● Your submission will be evaluated immediately and posted 

online.  https://www.kaggle.com/c/titanic-

gettingStarted/leaderboard

https://www.kaggle.com/competitions
https://www.kaggle.com/c/titanic-gettingStarted/leaderboard


Kaggle: Online Machine Learning Playground
Some of interesting datasets
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Kaggle: Online Machine Learning Playground
Some of interesting datasets
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● Datasets from top machine learning conferences

● KDD - Author-Paper Identification Challenge

● ICDM - Personalize Expedia Hotel Searches

● NIPS, ICML - Multi-label Bird Species Classification

● Datasets from companies to recruit data scientists

● Amazon - Employee Access Challenge

● Facebook - Keyword Extraction

● Yelp - How many "useful" votes will a Yelp review receive?

https://www.kaggle.com/c/amazon-employee-access-challenge
https://www.kaggle.com/c/facebook-recruiting-iii-keyword-extraction


Kaggle: Online Machine Learning Playground
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● Sometimes, winners posts their winning strategies.

● Dogs vs Cats: Convolutional Neural Network

● Titanic: Random Forests

● http://trevorstephens.com/post/72916401642/titanic-getting-started-

with-r

● Some teams are ranked from Machine Learning class at UNIST

● https://www.kaggle.com/users/146714/yunseong-hwang

● https://www.kaggle.com/users/147300/jongho-kim-at-unist

http://trevorstephens.com/post/72916401642/titanic-getting-started-with-r
https://www.kaggle.com/users/146714/yunseong-hwang
https://www.kaggle.com/users/147300/jongho-kim-at-unist


Kaggle: Online Machine Learning Playground
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● Kaggle also provides links for machine learning library 

https://www.kaggle.com/wiki/Algorithms

https://www.kaggle.com/wiki/Algorithms


Thank you!
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If you are interested in our Probabilistic Artificial Intelligence Lab,
please send an e-mail to jaesik@unist.ac.kr

mailto:jaesik@unist.ac.kr


Ongoing Research

● Extend RKF into non-linear systems

● E.g., Relational Rao-Blackwellized Particle Filter.

● Learning and inference with large-scale models

● Apply the principles of RKF and several applications.

● Machine Learning algorithms: e.g.:

● Learning Relational Kalman Filtering

● Learning Exponential Random Graph Models

● Best Predictive Generalized Linear Mixed Model using LASSO
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New Result in RKF
Theorem: Two variables in a cluster continue to have the same variance and 

covariances at the next time step if the same # of obs is made.

x

x’

E.g. x and x’ in Xi have the same variances and covariances with different means:
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New Result in RKF
Theorem: Two variables in a cluster continue to have the same variance and 

covariances at the next time step if the same # of obs is made.

x

x’

E.g. x and x’ in Xi have the same variances and covariances with different means:

Variances & Covariances

Variances & Covariances



Relational Gaussian Models (UAI-10)

Jaesik Choi 111

● Definitions

● Xt is a disjoint union of m clusters of state variables Xt
i.   

Xt= 𝑖 Xt
i, e.g., X90

i = {x90'
Ann,x

90'
John,x

90'
Tom}.

● Any two state variables in a cluster have the same variance and 

covariances.

For x, x’Xt
i, 

2
x,x= 

2
x’,x’ and for any y, 2

x,y = 2
x’,y

● Property: any multivariate Gaussian of  Xt can be represented 

as a product of pairwise potentials. (UAI-10)

x90'
Ann

x90'
John

x90'
Tom

X90
i


