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What is the Machine Learning problem?
Guessing game

® We want to correctly classify an event.

e E.g, Guessing game: occupation of the attendee.

® |nput features x:
® Glasses
e Height
e Gray hair
e Clothe

o ...
e Outputy:

e Student or not student.
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What are relevant features?
Features: ‘“Gray Hair”’ and “Clothe”

® We want to classify data and label correctly.

e E.g, Guessing game: occupation of the attendee.

® |nput features x:
® Glasses
e Height
® Gray hair (black:0 ~ completely gray:1)
e Clothe (casual:0 ~ formal:1)

o ...
e Outputy:

e Student (+) or not student(-).
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How does the data look like?
Let’s plot the data (x,y)

Features: x Label:y
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(CULED IR N Gy hair | Clothe | Student_
+ - T e 0.1 0.1 Yes
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Clothe .+ ++ + - 0.3 1 No
+
++".].++ + +
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0 (black) 1 (totally gray)

Gray hair
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How can we classify the data points?
With a hypothesis space: e.g., lines
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1 T Y A set of all separating lines
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Fop o
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+ +' () =1 _ othewise
O + ““‘ + ..:::" . )
(casual) >
0 (black) 1 (totally gray)

Gray hair



How can we classify the data points?
With a hypothesis space: e.g., lines

5 E This is a Machine Learning Model
, teC o
(formal) "‘j ++- - __: - Model: Hypothesis Space H
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Gray hair
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What is the best hypothesis?

Based on a measure: e.g., # of mistakes

=[{(x,y) | f(x) =y }|

Model: Hypothesis Space H
OE o O
A
o 09 S0
O DI© O

top o )
T4 ++ + o4 ‘\ a hypothesis with

DO
1 185 ™
(formal)|A ™ = ™.
- +.+
Clothe + + +
+ '|.' -l-
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0 T o+
(casual)

0 (black)

Gray hair
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How can we learn the best Hypothesis?
With learning (searching) algo.: e.g., Gradient Decent

gC ™ Model: Hypothesis Space H

““ "“’ ““‘ - - \“‘ - O O
(formal)|A ™ _|_’o.“+ - o) 8 o ¢ O
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Gray hair
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Machine Learning: Big Picture
Discriminative Model

1. Feature Selection

{x, y}

»

2. Model Selection

Model: Hypothesis Space H

0 0©

Training data

4. Model Evaluation

{x, ?}

Co

o©

oOO
o O

©o

Evaluation:

Test (or Real) data
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3. Learning Algorithm

h: the best hypothesis

ix, h(x)} Accuracy
95.x%




Machine Learning: Big Picture
Discriminative Model

1. Feature Selection

{x, y}

»
2. Model Selection

Model: Hypothesis Space H

Training data

4. Model Evaluation

{x, 7}

Evaluation:

) 4
km
»

Test (or Real) data

»
3. Learning Algorithm

h: the best hypothesis

ix, h(x)} Accuracy
95.x%

Well, are we done now?
What if, we want to model the data distribution?
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How can we model the data distribution?
Model the distribution p(x|y)

1
(formal) + - --: -
+ T
+ ++ -
Clothe = -
+ ++7F + -
+
+ :
0 + 4+ +
(casual) >
0 (black) 1 (totally gray)

Gray hair
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How can we model the data distribution?
Model the distribution p(x|y)

1
(formal) ) -
+ ., plx|y=")
Clothe
+

«— plx|y=+)

0

(casual) >
0 (black) 1 (totally gray)

Gray hair
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How can we model the data distribution?
Model the distribution p(x]y)

If we can model p(x|y=-) and p(x|y=+), we can answer p(y| x).

1 Y
(formal) + "
Clothe
0 +— plx]y=+)
(casual) >
0 (black) 1 (totally gray)

Gray hair
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Jaes

How can we model the data distribution?
Model the distribution p(x|y=+)

1

(formal)
Clothe
. <——- p(x|y=+)
(casual)
0 (black) 1 (totaIIy gray)

Gray hair
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How can we model the data distribution?
Model p(x|y=+): e.g., Mixture of Gaussian

f 1 ) Model: Hypothesis Space H
orma
OE O
© § o®¢ o
o 0009 S0
Clothe ©o DbOO
. p(xly=+) | pixIh) = fy (x|p, 6%)
(casual) >
0 (black) 1 (totally gray)
Gray hair
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How can we model the data distribution?
Model p(x|y=+): e.g., Mixture of Gaussian

1
(formal

Clothe

0
(casual)
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How can we model the data distribution?

Model p(x|y=+): e.g., Mixture of Gaussian

1 B .......................... Model: Hypothesis Space H
( High school : 10% | ~ - 096 0

E
S A
| 08F%5 e
- E O O o0 Cge
Eape O ® D O O

Graduate: 40% |

Undergrad.:50%

o[
>

(casual)
0 (black) 1 (totally gray)
Gray hair

Hope that p(x|y=+) = p(x|h)p(h|y=+)
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Machine Learning: Big Picture
Generative Model

1. Feature Selection

{x, y}

»
2. Model Selection

Model: Hypothesis Space H

Training data

4. Model Evaluation

{x, 7}

»
3. Learning Algorithm

EO ¢ (40%)°
A (50%
0 OO C?%Z (50%)
O OO 6
06 D B (10%)

h: the best hypothesis
o
and Sampl

e(Data) Generation

Evaluation: l//

Test (or Real) data

- o

ix, h(x)} Accuracy
95.x%

Well, are we done now?
What if, x includes many features beyond gray hair & clothe?
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How can we represent p(X),
if X includes many features?

e A naive way is to represent the full joint probability.

P(X|sX5,. .., X.)

e For discrete variables (e.g., n binary variables)

® We need a probability distribution table with 2*n entries.

e For continuous variables (e.g., n-variate Gaussian)

® We need a covariance matrix with n*2 entries



How can we represent p(X),
if X includes many features?

e A naive way is to represent the full joint probability.

P(X|sX5,. .., X.)

e For discrete variables (e.g., n binary variables)

® We need a probability distribution table with 2*n entries.

e For continuous variables (e.g., n-variate Gaussian)

® We need a covariance matrix with n*2 entries

Problem: (1) It’s hard to learn the entries;
(2) they may be independent each other.




Independent Random Variables

® [ndependence of variables
P(X;»X;) =P (X)) P(X;)
o E.g,Bivariate Gaussian, p(x;,x;)=fy(X;X; 1L, %)

® Which two variables are independent?

X; X;

Image sources: stats.stackexchange.com



Factor Graphs

e The probability of a joint assignment of values x to the set of
variables X is computed as:

HfEFactors f(x{f})
Z

p(X =x) =

/

Normalizing constant Subset of variables that
(or Partition function) participate in the
computation of f

[slide courtesy of Lise Getoor]



Factor Graphs: Log-Linear Rep

e Each[Jrepresents

exp(HL, fl(xl))

e EachMrepresents
exp(0g, f; j(xi, 7))

Jaesik Choi [slide courtesy of Lise Getoor]



Factor Graphs: Log-Linear Rep

For example, in the Ising Model the

@ @ possible assignments are {-1,+1} and

one has
¢;; = exp(6; jx;x;)

@ @ Positive 6; ; encourages neighboring
nodes to have the same assignment

Negative 0; ; encourages contrasting
assignment

[slide courtesy of Lise Getoor]



Markov Networks

e Markov networks (aka Markov random fields) can be viewed
as a special cases of factor graphs.

Jaesik Choi [slide courtesy of Lise Getoor]



How can we Inference with Factor Graphs?

e.g., ¢;;j = exp(@i,jxixj)

p(x1, X2, X3,%4) = P1 P P3 Py h12 P13 D23 P24 P34

Jaesik Choi
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How can we Inference with Factor Graphs?

e.g., ¢;;j = exp(@i,jxixj)

p(x1, X2, X3,%4) = P1 P P3 Py h12 P13 D23 P24 P34

p(xy) = 2 p(x1, X3, X3,X4) = ZZZP(’Csz»xs;xO

X1,X2,X3 X3 X2 X1
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How can we Inference with Factor Graphs?

e.g., ¢;;j = exp(@i,jxixj)

p(xy) = Z Z Z p(x1, X2, X3, X4)

X3 X2 X1

=) ) 6203 badrs b2 b Zcpl b1z 1.

Jaesik Choi X3 X2
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How can we Inference with Factor Graphs?

e.g., ¢;;j = exp(@i,jxixj)

p(xy) = Z Z Z p(x1, X2, X3, X4)

X3 X2 X1

— Z z ¢, P3 ¢4¢2,3 ¢2,4 ¢3,4€‘515’2,3”,-‘:

Jaesik Choi X3 X2
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How can we Inference with Factor Graphs?

e.g., ¢;;j = exp(@i,jxixj)

p(xy) = z z b2 O3 Pa23 P24 P34 ¢’2,3

X3

= ) bsbabsa ) b2 oz brada
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How can we Inference with Factor Graphs?

e.g., ¢;;j = exp(@i,jxixj)

p(xy) = z z b2 O3 Pa23 P24 P34 ¢’2,3

X3 X2

= Z ¢3 (1549153,4'3;(.1)%,4
x3 ."-----“



How can we Inference with Factor Graphs?

e.g., ¢;;j = exp(@i,jxixj)

p(xy) = z z b2 O3 Pa23 P24 P34 ¢’2,3

X3

= Z 31034 P34 = P4 z $3¢34 P34



How can we Inference with Factor Graphs?

e.g., ¢;;j = exp(@i,jxl-xj)

p(xy) = z z b2 O3 Pa23 P24 P34 ¢’2,3

X3

= z (153(1549’53,4 ¢§,4 — ¢4¢’4



How can we Inference with Factor Graphs?

e.g., ¢;;j = exp(@i,jxl-xj)

p(xy) = z z b2 O3 Pa23 P24 P34 ¢’2,3

X3

= z ¢3¢4¢3,4 ¢§,4 — 9’54(]5’4 — 4)”4



How can we Inference with Factor Graphs?

We summed (eliminated) out variables.
It is called “Variable Elimination”

e.g., ¢;;j = exp(@i,jxl-xj)

p(xy) = z z b2 O3 Pa23 P24 P34 ¢’2,3

X3 X2

= z ¢3¢4¢3,4 ¢§,4 — 9’54(]5’4 — 4)”4



How can we Inference with Factor Graphs?
What can happen?

® The order of elimination does matter!

® What if we have a bad elimination order?

Jaesik Choi
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How can we Inference with Factor Graphs?
What can happen?

® The order of elimination does matter!

® What if we have a bad elimination order!? If we eliminate x5...

The computational complexity is exponential to the treewidth
(the size of largest clique in a junction tree)




How can we Inference with Factor Graphs?
Any alternative? Belief propagation

e.g., ¢;;j = exp(@i,jxixj)

Intuition: Let’s exchange our opinions!



How can we Inference with Factor Graphs?
Any alternative? Belief propagation

e.g., ¢;;j = exp(@i,jxixj)

Intuition: Let’s exchange our opinions!

Time 0: every one has own belief about initial status.
Time 1: Send my belief to my neighbors
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How can we Inference with Factor Graphs?
Any alternative? Belief propagation

e.g., ¢;;j = exp(@i,jxixj)

Intuition: Let’s exchange our opinions!

Time 0: every one has own belief about initial status.
Time 1: Send my belief to my neighbors.
Time 1.5: Update my belief based on my neighbors.



How can we Inference with Factor Graphs?
Any alternative? Belief propagation

e.g., ¢;;j = exp(@i,jxixj)

Intuition: Let’s exchange our opinions!

Time 0: every one has own belief about initial status.
Time t: Send my belief to my neighbors.
Time t.5: Update my belief based on my neighbors.



How can we Inference with Factor Graphs?
Any alternative? Belief propagation

e.g., ¢;;j = exp(@i,jxixj)

We hope that it converges to a close-to-optimal value.

Time t: Send my belief to my neighbors.
Time t.5: Update my belief based on my neighbors.
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How to Estimate Future Events
with Graphical Models?

® Choose a graphical model: e.g,,
e Bayesian Networks,
e Markov Random Fields,

e Kalman Filter

e Collect observations:

® Tom sold his home at $0.5 million.

?

Tom’s home

S0.5 million

® The mortgage rates increased(?) to average 5.5%.

® The unemployment rate downed(|) to 7%.

e Compute conditional probabilities by relationships:

P( value of John’s home | observations )

Jaesik Choi
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Estimating Future Events
with Large-Scale Graphical Models

e Estimating future events is essential in
e Financial markets (housing)
e Environment (extreme weather, groundwater)

® Energy (smart grid)

housing weather energy

Jaesik Choi 48



Challenges: Large-Scale Models

e Hard to handle large numbers of elements
e US housing market: 75.56 million house units

® Hurricane Sandy: spanning 1,100 miles (1,800 km)

e Computational Complexities

e Kalman filter:
O(n3) = 0(75.563 - 10° trillion)

e Dynamic Bayesian Networks and Markov Random Field:
O(exp™) =0 (eXp75.56 miIIion)



Some Elements Share Relationships

e Elements share Relationships
e If mortgage 1 |% — price of Tom’s home | 3%
e If mortgage 7 |% — price of John’s home | 3%

e If mortgage 7 |% — price of any home in the town | 3%

' ,
e Relations over clusters o

e Town = {Tom, John, ... }

e A(price of name's home)

= —3AMortgage + ¢

® name € Town
e c~N(0,2), Gaussian Noise

Jaesik Choi 50




Relational Graphical Models
or Statistical Relational Learning (SRL)

e Traditional statistical machine learning approaches assume
® A random sample of homogeneous objects from single relation
® Independent, identically distributed (lID)

e Traditional relational machine learning approaches assume:
® Logical language for describing structure in sample

e No noise and no uncertainty

e Real world data sets:
e Multi-relational and heterogeneous

e Noisy and uncertainty

[slide courtesy of Lise Getoor]



Example: Social Media

[slide courtesy of Lise Geetor]



Social Media Relationships

[slide courtesy of Lise Getoor]



Social Media Relationships

Predict:

Sentiment

Friendship/Fan

Affiliations

[slide courtesy of Lise Getoor]



Massively Open Online Courses (MOOCs)

[slide courtesy of Lise Getoor]



MOOC Relationships

[slide courtesy of Lise Getoor]



MOOC Relationships

Predict:
Performance
Role
Participation

[slide courtesy of Lise Getoor]



What is the difference?
HEREEEEEN

Most of the data that is available in the
newly emerging ear of big data does
not look like this

Or even like this

NN /N AN

It looks more like this

_’.f{_T o] )’:J\:‘j /\‘ g
o~ ¢

[slide courtesy of Lise Getoor]
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What is Statistical Relational Learning?

e Collection of techniques which combine rich relational knowledge
Al/DB representations with statistical models
e First-order logic, SQL, graphs,

e Graphical models, directed, undirected, mixed; relational decision trees, etc.

e Example:

® Markov Logic Networks (Washington and Texas), Bayesian Logic Programs
(Berkeley & MIT), Probabilistic Relational Models (Stanford), Factorie (UMass),
Relational Kalman Filtering (U of Illinois & UNIST), and ...

o Key ideas
e Relational feature construction
e Collective reasoning

e ‘Lifted’ representation, inference and learning

[modified from a slide courtesy of Lise Getoor]



Lifted Inference
(or First-Order Probabilistic Inference)

Input:
Compact: Relational Models

Ground

Probabilistic Output:
No cluster: Graphical Models i Posterior

Ground inference
(E.g.Variable Elimination)

Jaesik Choi [slide courtesy of David Poole]
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Lifted Inference
(or First-Order Probabilistic Inference)

Input: Lifted Inference .
. — Relatlonal
Compact: Relational Models .
Posterior
Ground
Probabilistic Output:

> Posterior

Ground inference
(E.g.Variable Elimination)

No cluster: Graphical Models

Jaesik Choi [slide courtesy of David Poole]
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Lifted Inference
(or First-Order Probabilistic Inference)

Input: Lifted Inference .
. — Relatlonal
Compact: Relational Models .
Posterior
Observations
Partial separation & inference*
Ground
Probabilistic Output:

> Posterior

Ground inference
(E.g.Variable Elimination)

No cluster: Graphical Models

* Before O(n3) — Now 0(nm?)

Jaesik Choi 62



Lifted Inference
(or First-Order Probabilistic Inference)

Input: Lifted Inference

. — Relational
Compact: Relational Models susun= l) ﬁ Posterior

Approximation & inference**
Observations l

Partial separation & inference*

Ground

Probabilistic Output:
No cluster: Graphical Models i Posterior

Ground inference
(E.g.Variable Elimination)

Jaesik Choi 63



Main Ideas and Contributions

* Representing and maintaining compact structures
over clusters is feasible, and thus can lead to accurate and
efficient estimations of future events.

Scalable Kalman filter
Before: 0(n3) — Now: O(nmz)

Unified, efficient estimations of discrete-continuous models

Before: O(exp(n)) — Now: O(exp(m) )

¥ approximation
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Kalman Filter

e Kalman Filter is an algorithm which produces estimates of
unknown variables given a series of measurements (w/ noise)
over time.

® Numerous applications in

Robot localization

Autopilot

Econometrics (time series)

Military: rocket and missile guidance
Weather forecasting

Speech enhancement

Jaesik Choi
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Example — Kalman Filter for John’s Home

® Input statements

® John’s house price was $0.39M at 2010.

e Each year, John’s house price increases 5%.

® John’s house price is around the sold price.

® John’s house is sold sporadically.

e Question: what is the price of John’s house each year?

Jaesik Choi 67



Example — Kalman Filter for John’s Home

® Input statements

2 John’s house price was $0.39M at 2010.

N )

Each year, John’s house price increases 5%.

® John’s house price is around the sold price.

e John’s house is sold sporadically. |

¢, Question: what is the price of John’s house each year?

x'V)opn = 1.05x1% L+ o Sold at $0.44M e ~ N(0,6%)

X' e = 0.39M + g0

:
H
: : :
H H H
H H H
: > E > E
. || > > — —— — —
H H H
H H H
H H
H H
H H

10 :
X" John X

2010 011 ¢ 2012 i 2013
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Why Kalman Filter Takes O(n3) operations?

e Kalman Filtering steps
|. Input: prior belief, X* ~N(ut,2")

i t=J+/t t t
n variables, X*={x"|,;,., X‘15m X anns- - -}-

2. Take the transition model:

)(t-'-le"I')(t + Strans when Strans :N(O’ZT).

Tom’s home

3. Updated covariance matrix: X'=A X A T+3.
4. Take the observation model:
X*1=A 0bs*! + ¢,  when g, =N(0,Z).
5. Kalman gain: K = Z*AJT(AZAST+ Z5).
6. Output: update belief, X' ~N(ut!' Z*)
New mean: ut*' = ut +K(Obs!-u1%)
New covariance: Xt = (I-KA,) Z¢

Jaesik Choi 69



Why Kalman Filter Takes O(n3) operations?

e Kalman Filtering steps
|. Input: prior belief, X* ~N(ut,2")

n variables, X*={x"|,;,., X‘15m X anns- - -}-

2. Take the transition model:

Xt =ACXE + —N(o zT)

Tom’s home

when ¢

trans trans

4. Take the observation model.

Xt”'—AOObst*' fe, when - —N(O,ZO). Inversions and muItlpI|c.at|ons
---------- of the n by n matrix

need O(n?) operations.

6. Output: update belief, Xt+' ~N(Mt+',2t+')

2 2
011 " O1n

t _ . .

New mean: put*! = t+K(Obst+| ) 2" = oo
---------- l O-nl e O-n’n

New covariance: ﬂt"' = (I-KAg) Z¢ 1

Jaesik Choi N ——————— - - I 70



Relational Kalman Filter
A set of element shares relationship!

. _Town
Input statements Town

e Town is a set of houses.

e Town’s houses have initial prices at 2010.

e FEach year, Town’s house prices increase 5%.

e Town’s house prices are around sold prices. ;
Ann’s home

e Town’s houses are sold sporadically.

Tom’s home

e Question: what is the prices of Town’s houses each year?

Jaesik Choi 71



Relational Kalman Filter (1JCAI-11):

New Transition Models & Observation Models

® |nput statements

e Town is a set of houses.

e Town’s houses have initial prices at 2010.

2 Each year, Town’s house prices increase 5%.

e Town’s house prices are around sold prices.

‘ Tom’s home
\

e Town’s houses are sold sporadically.

Koo home

e ‘Question: what is the prices of Town’s houses each year?

h, h’ € Town

Sold at:$0.44M

122 — 12’

12'
e
12'

X Ann/

N
100 = 10
X h X h’ + Stown ‘

Jaesik Choi Tom
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Relational Gaussian Models (UAI-10)

® Definitions

e Xtis a disjoint union of m clusters of state variables Xt.

Xt_U th’ €.8- XIO = {XIO Oljohn’XIO'Tom}'

Ann’

® Any two state variables in a cluster have the same variance and
covariances.

2 2

’ t p R—
For x,x'eX%, 6% =G Xy

2 —_—
«x and forany y, ¢, =0

® Property: any multivariate Gaussian of X. can be represented

as a product of pairwise linear Gaussian, i.e., quadratic

exponentials. (UAI-10)

(_ M. M, ; —
P T Jen| e Heﬂ{ L )J

Jaesik Choi yE‘X}J 73




Relational Gaussian Models (UAI-10)

® Definitions

e Xtis a disjoint union of m clusters of state variables Xt.
= 10 = £ 10’ 10 10"
Xt_Ui Xti’ €.8- X i {X AnnsX John’X Tom}'

® Any two state variables in a cluster have the same variance and

covariances.

e Xt 2 = 2 2 =2
For x, X' e X%, 6%, ,= 6%, and for any y, 6, = 0%,

X,y

® Property: any multivariate Gaussian of X. can be represented

as a product of pairwise linear Gaussian, i.e., quadratic

exponentials. (UAI-10)

P(X, )
Groups | & j =2

Jaesik Choi

%'I
J"E-X;:j

(x_EEPM;-: Ve y

2y

Group parameters

Individual parameters
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Solve Kalman Filtering by Inference

Product of Gaussian pdfs

X! ohn = 1.05x1% )+ g

X100 = 0.39M + g

tras

10’
X John

2010

flx;u,0%) =

1 x!Z John — obs!? John T €obs
I H
.
@
I’
John :
2011
1 _1x—p)?
e 2( o )
oV2T

' ' , . 2 , _ , .
P(Xlojohn’xI Ijohn*ocf(xlojohn' O39M' Gjohn) 'I‘(XI IJohn | 'OSXIO John’ O' O-tzrans )

Prior belief at 10’

Transition model
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Solve Kalman Filtering by Inference

Marginalize variables (the previous time step)

' = 10°
X John 1.05x John + Stras ‘

X100 = 0.39M + g

XIO'John XI IJohn
2010 | 201 |
1 1/x—p)?
fGipmo?) =——e 2l o)
oV 2T

o 0 Io’ . ,
Marginalize x'%,,,,, Posterior x'"j

P(Xlojohn’xl Ijohn)ocf(xl Johmo 39M, ajohn) f ! John_l .05x'¢ Jahn' 0, 0frans )

(0]
[} U ' ) ’ . 2
P(x! Ijohn) _[ P(Xlojohn’xI IJohn)d XIOJohn (XI | John? 0.41M, O-johnll) 76
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Does RKF take less than O(n?) operations?
Answer: Not yet.

e Kalman Filtering steps
I

X*1=A 0bs*! + ¢,  when g, =N(0,Z). - 5

, o= ] 11 " O1n
5. Kalman gain: K = Xt AOT(P{c_,Zt AT+ o). Rl — | :

'

2 2
6. On1 " Onn|
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Key Intmtlon in RKF
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Key Intmtlon in RKF

e Vanilla Kalman filter: e New filtering in RKF :
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Key Intmtlon in RKF
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Key Intuition in RKF

Under some conditions, a set of continuous RVs continues

to have the same pairwise relationships during filtering.

e Vanilla Kalman filter: e New filtering in RKF :

8l
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Key Intuition in RKF

Under some conditions, a set of continuous RVs continues

to have the same pairwise relationships during filtering.

e Vanilla Kalman filter: * New filtering in RKF :
&=+ John! % John:
R . .:.
"'Tom:"": ------ "'::Tom.'""- ------
' DTS4 : “‘ v :
., S,
- Ann: - Ann:
Yeus® ‘,..,__.

m: # of clusters

0(n3) O(n - m?)
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Key Intuition in RKF

Theorem: Two variables in a cluster continue to have the same variance and

covariances at the next time step if the same # of obs is made.

e Vanilla Kalman filter:

'John"@

“ 0‘

"'{Tom‘:"

L 4
‘.II“

"

Am

Jaesik Choi

0(n3)

e New filtering in RKF :

"'l.‘t .,
i. .I-John!----nlu----@
ags®
‘t"b“ E
' :Tom'llll.llllll
mee

m: # of clusters

O(n - m?)
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The Relational Kalman Filtering Algorithm

Marginalize all X! in time step, t

¢I(Xt+1) - j ¢T(Xt+1 |Xt)¢(Xt) dxt

Split variables from clusters

given different # of obs.
Xty < Split(xt**1, 0t*1)

With dense observations,
m << n is maintained!

Apply update models
b(Xnew) < @' (Xnew) - o (071X

l

Return ¢(X4t1), go to time step, t+1
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The Relational Kalman Filtering Algorithm

Marginalize all X! in time step, t

¢I(Xt+1) - j ¢T(Xt+1 |Xt)¢(Xt) dxt

Split variables from clusters

given different # of obs.
Xty < Split(xt**1, 0t*1)

Apply update models
b(Xnew) < @' (Xnew) - o (071X

l

Return ¢(X4t1), go to time step, t+1

............... > Next slide

With dense observations,
m << n is maintained!

85



Relational Kalman Filtering Algorithms

e Filtering is inference with RGMs:

e Marginalize all state variables (x;,p,'%, X1, '© 5.+ ) at time t.

® Marginalize a variable xeX, (X’ .= X/ \x)

e Marginalization preserves pair-wise potentials.

e Continue to marginalize all remaining variables.



Relational Kalman Filtering Algorithms

e Filtering is inference with RGMs:

e Marginalize all state variables (x;,p,'%, X1, '© 5.+ ) at time t.

® Marginalize a variable xeX, (X’ .= X/ \x)

ConstaI.t SmL of variables SquaIe of sum of variables

e Marginalization preserves pair-wise potentials.

e Continue to marginalize all remaining variables.
Jaesik Choi 87



Experiments (Simulation)

e Given: housing market example.
e Observations for:

e Mortgage Rate

e Sales prices for a set of houses

e Estimate the price of each house (mean and variance)

1,000,000 ==
E .. ....

» 100,000 - g .

= ] & ~#- Vanilla KF

= 10,000 - -

20 - n -+-Relational KF

T 1,000

5% e P —

= 2 ; S CTEEEE

= £ 100

(-5 N’

%JJ 10

i

g 1 I I I I

< 400 600 800 1000
Jaesik Choi Number of houses




Experiments (Groundwater Models)

e Data is extracted in the largest aquifer (Ogallala) in US.
® Pumping (for farming) depletes many of water wells.

e Estimating level of groundwater is critical.

LJ

L 4
L 4
L 3
L 4
*
L 4
L 4
L 4
*
L 4
L 4
*
L 4
L 4
L 4
*
L 4
L 4
L 4
’0
L 4

US drought maps (New York Times)



Experiments (Groundwater Models)

e Dataset
® The model has measures (water levels) for 3078 water wells.
® The measures span from 1918 to 2007 (about 900 months).
® It has over 300,000 measurements.

e Cluster: 3078 wells into 10 groups.

® Train parameters using the auto regression (AR).

e Vanilla Kalman filter

e RKF



Experiments (Groundwater Models)

e Results ( root-mean-square error)
e Vanilla Kalman Filter: 4.17 feet (about | 1.59 sec / filtering step).
e RKEF: 3.60 feet (about 0.60 sec / filtering step).

RKF

™~ Vanilla KF

Feet (water level)

= Observations

Months




Experiments (Groundwater Models)

e Additional experiment for Vanilla KF + RKF
e KF for coefficients of the transition model.

e RKF for the observations model and covariance matrix (only) of the
transition model.

e Result: 0.83 feet (about |1.49 sec / filtering step).

RKF

™~ Vanilla KF

Feet (water level)

= Observations

Months




Summary of RKF

® | present a new filtering algorithm that enables linear time

exact Kalman filtering in contrast to the cubic time traditional
KF.



Exchangeable Random Variables (RVs)

Exchangeable RVs:a set of RVs, which are interchangeable among others.

P(xq,:,Xq) = P(xn(l), "',Xn(n)), T: a permutation

e Exchangeability is already exploited and utilized in many applications such as
image & video retrieval and network analysis.

e Examples
® Image & video matching: exchangeable image features
e Econometrics: a set of exchangeable portfolio (in risk analysis)

® The Netflix prize: groups of users & groups of movies

Jaesik Choi 94



De Finetti’s theorem and Dirichlet Process

Exchangeable RVs:a set of RVs, which are interchangeable among others.
P(xq,:,Xq) = P(xn(l), "',Xn(n)), T: a permutation

[de Finetti, 193 1] shows that any joint probability of infinite, exchangeable,
binary RVs can be represented by a mixture of iid RVs.

@\@ ® |:> j 0t(1 — 8) "t (8)do

: lim P(xq, - when t = }}; x; and

X x3) 7% X)) (%) (%) (%9 (x5) ¢(0) is a prior

[Carbonetto, Kisynski, de Freitas, Poole, 2005] uses the Dirichlet process
to model infinite, exchangeable discrete variables.

Research issues: continuous RVs, finite RVs (e.g., errors)



Relational Variational Inference (UAI-12)

The Dirichlet process does not have a closed-form

An inference issue: the product of Dirichlets is difficult to handle.

[Carbonetto, et al., 2005]

R AR

X,)(X3) (X ) (X5 X,)(X3) (X ) (X5

1
P, (xy, -, %y) = j 6 (1 — 8,)"~ ¢, (6,)d6,
0

0% (1-0)"" -+ 05 (1—6)"" =

05(1— 6yt

This work
¢ . 9
t = in
t t

o =(,) j 031 - 0,7 4 (0,0,

0

1
= j fBinomial (t; 1, 01) ¢, (el)del
0

Gaussian approx. solves the issue!




Relational Variational Inference (UAI-12)

Mixture of Gaussians for Relational Hybrid Models

For binary exchangeable RVs. This work: variational RHMs
[de Finetti, 1931]

@\? — A — ’/¢dt=zxi

t
X X Xy X3 X4 Xg

Input: P (x4, -+, Xp) A mixture of iid RVs A mixture of Binomial =
A mixture of Gaussians (MoGs)

For continuous exchangeable RVs.
[Hewitt & Savage, 1955]

b
ol W §
—> —> o PO=21x =0

& X 0 © @
%) A mixture of iid RVs A mixture of pdfs
! ~ A mixture of MoGs (KQIOE)4O




Relational Variational Inference (UAI-12)

Experiments at Groundwater

Traditional Models
Nebraska

gD

Colorado Kansas

Inference time: 37.9 secs

L Water level data over 3,078 wells from
1918 to 2000

O Clustering wells into 10 groups of
(approx.) exchangeable RVs

U Learning a mixture of cdf (MoGs) for
each group (training)

U Calculating the conditional probability of
a set of RVs (testing)

Variational Models
Nebraska
Colorado Kansas

0.3 secs (w/ similar precision)



Conclusion: The Big Picture:
Towards Human-Level Al

e Human-like Knowledge Representation: Logic + Probability:

Relational
Models

Probability

® |Intuitively speaking:
e Relational Models = Probabilistic First-Order Logic (FOL)
=~ Probabilistic Relational Calculus (Relational DB).
® Human-level knowledge representation

E.g.,A (owner) files Bankruptcy— A’s house is foreclosed
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Contents

® Machine Learning Revisited

® Bayesian Learning

® Graphical Models and Inference Algorithms
e Lifted Graphical Models and Inference

e Relational Kalman Filtering

e Appendix: Kaggle Competition
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Kaggle: Online Machine Learning Playground

e Kaggle provides an online platform to learn and compete for
several machine learning problems.
(https://www.kaggle.com/competitions)

® When there is a host who has a machine learning problem
to solve

e E.g., GE want to optimize the flight routes given an origin
and destination and traffic and weather conditions. ($220K)

e Data scientists compete to solve the problems.

® Your submission will be evaluated immediately and posted
online. https://www.kaggle.com/c/titanic-
gettingStarted/leaderboard



https://www.kaggle.com/competitions
https://www.kaggle.com/c/titanic-gettingStarted/leaderboard

Kaggle: Online Machine Learning Playground

Some of interesting datasets



Kaggle: Online Machine Learning Playground

Some of interesting datasets

e Datasets from top machine learning conferences
e KDD - Author-Paper Identification Challenge

e |CDM - Personalize Expedia Hotel Searches
e NIPS, ICML - Multi-label Bird Species Classification

e Datasets from companies to recruit data scientists

® Amazon - Employee Access Challenge

® Facebook - Keyword Extraction

® Yelp - How many "useful” votes will a Yelp review receive?


https://www.kaggle.com/c/amazon-employee-access-challenge
https://www.kaggle.com/c/facebook-recruiting-iii-keyword-extraction

Kaggle: Online Machine Learning Playground

® Sometimes, winners posts their winning strategies.
® Dogs vs Cats: Convolutional Neural Network
e Titanic: Random Forests

e http://trevorstephens.com/post/72916401642/titanic-getting-started-
with-r

e Some teams are ranked from Machine Learning class at UNIST

e https://www.kaggle.com/users/146714/yunseong-hwang

e https://www.kaggle.com/users/147300/jongho-kim-at-unist



http://trevorstephens.com/post/72916401642/titanic-getting-started-with-r
https://www.kaggle.com/users/146714/yunseong-hwang
https://www.kaggle.com/users/147300/jongho-kim-at-unist

Kaggle: Online Machine Learning Playground

e Kaggle also provides links for machine learning library
https://www.kaggle.com/wiki/Algorithms

* - has performed very well on many competitions


https://www.kaggle.com/wiki/Algorithms

Thank you!

If you are interested in our Probabilistic Artificial Intelligence Lab,

please send an e-mail to jaesik@unist.ac.kr



mailto:jaesik@unist.ac.kr

Ongoing Research

e Extend RKF into non-linear systems

e E.g., Relational Rao-Blackwellized Particle Filter.

® |earning and inference with large-scale models
e Apply the principles of RKF and several applications.

® Machine Learning algorithms: e.g.:
® [earning Relational Kalman Filtering
® |earning Exponential Random Graph Models
e Best Predictive Generalized Linear Mixed Model using LASSO
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New Result in RKF

Theorem: Two variables in a cluster continue to have the same variance and

covariances at the next time step if the same # of obs is made.

E.g. x and X’ in X, have the same variances and covariances with different means:

1

1

B=)| D a v+ D Guyy +C+c

. r
z J’EX:,f yEXf+1,z‘
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New Result in RKF

Theorem: Two variables in a cluster continue to have the same variance and

covariances at the next time step if the same # of obs is made.

E.g. x and X’ in X, have the same variances and covariances with different means:

" []

Variances & Covariances

Jaesik Choi Variances & Covariances
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Relational Gaussian Models (UAI-10)

® Definitions

e Xtis a disjoint union of m clusters of state variables Xt.

Xt=U; Xt, e.g., X0 = {x%, x%

John’Xgo

nn?’

Tom}'
® Any two state variables in a cluster have the same variance and

covariances.

) t ~2 = ~2 2 =2
For x, X’ e X%, 6%, ,= 6%, and for any y, 6, = 0%,
® Property: any multivariate Gaussian of X. can be represented

as a product of pairwise potentials. (UAI-10)
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